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Abstract

The exponential growth of scientific literature has created unprecedented challenges for re-
searchers seeking to access specialized knowledge. While there exist platforms that address
this challenge, such as ScienceDirect’s Topic Pages, these platforms primarily offer fragmented
information consisting of isolated snippets without cohesive synthesis. This fragmentation im-
poses a significant cognitive burden on users who must manually connect disparate pieces of
information to develop a comprehensive understanding of a complex topic.

To address these limitations, we present Apollo, a multi-agent framework for creating
Wikipedia-like topic pages from scientific literature. Apollo employs an iterative knowledge
curation process that constructs knowledge graphs from scientific snippets, uses collabora-
tive agents to systematically expand topic exploration, and generates well-referenced content
through specialized writer and reviewer agents. We introduce SciWiki-2k, a benchmark dataset
of 2,000 high-quality Wikipedia articles spanning 20 scientific domains, to evaluate automated
scientific content generation.

We evaluate Apollo against state-of-the-art baselines including STORM, OmniThink, and
oRAG using comprehensive methodologies incorporating automatic metrics, LLM-as-judge as-
sessments, and human expert evaluations. Our graph-based knowledge curation approach re-
trieved significantly more unique snippets and achieved greater information diversity compared
to baseline methods. Apollo demonstrated superior outline quality with advantages in coher-
ence and logical organization, validated through preference tests across multiple LLM evalu-
ators. For article generation, Apollo produced content that closely resembles human-written
articles, as evidenced by ROUGE scores and entity recall metrics, with particular strengths in
interest, depth, and relevance.

Most significantly, Apollo achieved substantially lower hallucination rates (5.70% compared
to STORM’s 34.34%) while maintaining superior citation coverage. The critical reviewer agent
proved essential for factual grounding, with ablation studies confirming that iterative refinement
significantly enhances content reliability. Human expert evaluation validated strong alignment
with automated assessments, with subject matter experts rating Apollo higher on 8 out of 9
metrics, particularly in content depth, coverage, and factual verifiability.

These findings demonstrate that multi-agent frameworks with structured knowledge cu-
ration can significantly improve automated scientific content generation, offering a promising
approach for addressing information synthesis challenges in rapidly expanding scientific do-
mains.



Chapter 1

Introduction

The exponential growth of scientific literature has created unprecedented challenges for re-
searchers, educators, and students seeking to access specialized knowledge [1]. With millions
of research articles published annually, finding reliable and relevant sources among this vast
amount of information has become increasingly complex and time-consuming [2]. Researchers
often struggle to identify the most pertinent information for understanding specific concepts,
particularly when encountering unfamiliar topics outside their primary expertise.

Recognizing this challenge, ScienceDirect, Elsevier’s scientific database platform, introduced
Topic Pages [3]. This knowledge base helps users understand scientific concepts across 20 do-
mains by presenting snippets from peer-reviewed journals, articles, and books alongside concept
definitions and related topics [4]. For example, the machine learning Topic Page displays a def-
inition and relevant snippets covering various aspects about this concept1. However, while
these pages successfully address the problem of presenting reliable sources, they primarily offer
fragmented information consisting of isolated snippets without cohesive synthesis. As a result,
users may struggle to (1) develop a holistic understanding of the topic, and (2) gain in-depth
knowledge due to the cognitive burden of connecting disparate pieces of information [5]. Ide-
ally, users would benefit from topic pages that synthesize sources into coherent narratives, as
research has shown improved learning outcomes with synthesized information [6, 7]. Unfortu-
nately, creating such integrated content remains highly labor-intensive and time-consuming [8],
making it impractical to produce at large scale.

Recent advances in large language models (LLMs) have opened possibilities for automating
content generation tasks [9]. However, applying these technologies to the creation of scientific
topic pages introduces unique challenges beyond simple text generation. Scientific content
requires high factual accuracy, proper grounding in peer-reviewed sources, and navigation of
complex domain-specific terminology [10]. Existing automated article generation methods face
limitations when applied to scientific content creation [11]. Many struggle with maintaining
factual grounding throughout long-form content, often producing articles with unsupported
claims or hallucinated information [12]. Additionally, these methods typically employ simple
retrieval strategies that may miss important related concepts or fail to explore a topic with
sufficient depth [13].

To address these limitations, this thesis presents Apollo, a multi-agent framework designed
for generating comprehensive, Wikipedia-like topic pages from scientific literature. Apollo em-
ploys an iterative knowledge curation process that systematically explores topics through struc-
tured information gathering, constructs detailed outlines based on discovered relationships, and
generates well-referenced content through collaborative agent interactions. The framework ad-
dresses key challenges in automated content generation, including information diversity, factual
grounding, and content organization.

1See example at: https://www.sciencedirect.com/topics/computer-science/machine-learning
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In order to assess how well Apollo performs across the different stages of topic page creation,
we present SciWiki-2k, a comprehensive benchmark dataset of high-quality Wikipedia articles
focused on scientific concepts. This dataset comprises 2,000 articles spanning 20 distinct do-
mains, systematically constructed by selecting the most popular topics from ScienceDirect. To
our knowledge, SciWiki-2k is the first dataset specifically designed for evaluating the automa-
tion of topic pages across such a broad range of scientific domains.

Using this benchmark dataset, we assess the performance of Apollo and comparable state-
of-the-art methods. We begin with traditional automatic metrics to measure similarity to
human-written pages through word-overlapping approaches. However, recognizing that lexical
metrics cannot capture semantic meaning and content quality [14], we leverage large language
models as evaluators. These models have shown strong correlation with human judgment and
allow us to conduct cost-effective assessment across multiple quality dimensions [15, 16, 17].
Finally, since LLM-based evaluations alone may not capture all complexities of content quality
[18], we also conduct validation through human expert evaluations. To this end, we work with
subject matter experts (SMEs) to assess the generated topic pages using the same evaluation
criteria employed by our LLM judges.

Given this context, our investigation is structured around the following research questions:

RQ1: How do different components of our iterative knowledge curation process and collabora-
tive content generation approach contribute to improvements in automatic metrics and
content quality assessments compared to existing baseline methods?

RQ2: How does our collaborative agent system improve factual grounding and citation quality,
and which components of our iterative refinement process are essential for maintaining
well-referenced and verifiable content?

RQ3: To what extent do automated LLM evaluations align with human expert assessments
when both use the same set of rubrics to evaluate the quality of a topic page?

The contributions of our work include: (1) Apollo, a novel multi-agent framework for au-
tomatically generating scientific topic pages; (2) SciWiki-2k, a publicly available benchmark
dataset for evaluating automated scientific content creation; (3) A comprehensive evaluation of
state-of-the-art long-form content generation methods on writing tasks; (4) Two novel evalua-
tion metrics adapting methodologies from fact-checking literature to assess the factual ground-
ing of generated content; (5) An evaluation comparison examining the correlation between
expert human judgments and automated assessment metrics across multiple quality dimen-
sions.

The remaining of this thesis is structured as follow. Chapter 2 provides background infor-
mation and establishes the theoretical foundation for this research. Chapter 3 describes our
Apollo framework, including the iterative knowledge curation process and collaborative con-
tent generation methodology. Chapter 4 outlines the experimental setup, evaluation metrics,
and baseline comparisons used to assess our approach. Chapter 5 presents and analyses the re-
sults across knowledge curation quality, content generation performance, and factual grounding
metrics. Finally, Chapter 6 summarizes our findings, discusses limitations, and suggests future
research directions.
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Chapter 2

Related work

2.1 Topic Pages
Topic Pages represent a specialized knowledge base developed by ScienceDirect to address the
challenge of navigating complex scientific terminology and concepts across diverse research do-
mains. Introduced by Elsevier as part of their ScienceDirect platform, Topic Pages serve as
curated collections of scientific concepts sourced directly from peer-reviewed scholarly docu-
ments [3]. Unlike collaborative platforms such as Wikipedia, Topic Pages maintain scientific
rigour by exclusively presenting content from academic sources.

Figure 2.1: Topic Page on Machine Learning

As illustrated in Figure 2.1, the current structure of Topic Pages consists of three primary
components: a concise definition providing a brief yet comprehensive description of the scien-
tific concept, a collection of up to ten text snippets extracted from relevant books and articles
published within the ScienceDirect database, and a set of related topics to facilitate knowl-
edge exploration and discovery. The definition component is generated through a combination
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of BERT-based sentence classification and Retrieval Augmented Generation (RAG) pipelines,
while the snippet ranking employs fine-tuned dense retrieval models optimized for scientific
content using Generative Pseudo Labeling techniques [3]. These components are designed to
provide researchers with immediate access to crucial information, particularly when encounter-
ing unfamiliar concepts.

However, while Topic Pages successfully present reliable sources and maintain scientific
credibility, their current format primarily offers fragmented information consisting of isolated
snippets without cohesive synthesis. Recent advances in generative artificial intelligence [9]
present an opportunity to automatically transform these curated scientific sources into coherent,
Wikipedia-style topic pages.

2.2 Existing multi-agent systems
The emergence of large language models has transformed how we approach complex writing
tasks [19, 20], particularly in expository writing where the goal is to present factual information
in an organized, neutral manner. This includes generating Wikipedia-like articles, literature
reviews, and scientific summaries.

Traditional approaches using single LLMs face fundamental limitations when generating
long-form content [21]. Context window constraints force systems to process information in
chunks, often breaking semantic continuity across sections [22]. More critically, without proper
grounding mechanisms, LLMs tend to hallucinate or rely on their internal knowledge rather
than retrieved sources, leading to unsupported claims in the final output [23].

To address these challenges, researchers have developed multi-agent frameworks that de-
compose the writing process into specialized roles [24]. These systems mirror human writing
workflows, which typically involve distinct phases of research, planning, drafting, and revision
[25]. By assigning specific tasks to different agents, these frameworks can maintain better
quality control while leveraging the strengths of each component [26, 27].

Below we present three foundational methods that relate directly to the generation of long-
form content:

1. Outline-driven RAG (oRAG) [11]: a simple multi-agent approach which follows a
straightforward two-stage process. First, the system generates a structured outline using
an LLM based on the input topic. Second, it processes each section independently by
retrieving relevant information specific to that section’s heading. Lastly the retrieved
content is summarized into a section. While computationally efficient, oRAG suffers from
limited exploration during the research phase. The system only performs retrieval based
on the initial topic and section headings, missing potentially valuable related concepts
that could emerge through more iterative search processes.

2. STORM [11]: a more sophisticated approach based on simulated conversations. The
system first identifies different perspectives on a topic by analysing related Wikipedia
articles, then assigns these perspectives to different LLM agents. These perspective-
guided agents engage in simulated conversations where one agent asks questions while
another provides answers grounded in retrieved web sources.
The key innovation in STORM lies in its perspective-driven research methodology. For ex-
ample, when researching ”the 2022 Winter Olympics opening ceremony,” an event planner
perspective might ask about transportation arrangements and budgets, while a cultural
analyst might focus on symbolic elements and artistic choices. This multi-perspective
approach helps STORM discover more diverse information compared to generic question-
asking strategies. However, STORM faces significant challenges with factual grounding.
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The system’s conversation-based approach can lead to high hallucination rates, as agents
may generate round of conversation where different perspective may be unaware of what it
has been already discussed thereby looping into conversation with no extra new retrieved
information.

3. OmniThink [28]: a recent multi-agent workflow which employs a hierarchical tree-based
exploration strategy. The system introduces two core components: an Information Tree
that organizes retrieved information hierarchically, and a Conceptual Pool that maintains
extracted insights and guides further exploration. The system starts with a root topic,
retrieves initial information, and extracts key concepts into a conceptual pool. It then iter-
atively expands the information tree by generating targeted queries based on the explored
branched of the tree. This process continues until sufficient information is gathered. The
strength of OmniThink lies in its systematic approach to knowledge expansion. Unlike
STORM’s conversation-based method, OmniThink uses a structured tree exploration to
ensure comprehensive coverage. However, while this method introduces a novel system,
the exploration of the tree may lead to explore already covered areas. This happens
because the strategy used by this framework relies on independent branch exploration.
In concrete terms, it falls back to the STORM problem were different perspective are
unaware of what has been discussed by the other agents. In this case, this happens due
to the unawareness between isolated nodes of the tree structure. Similarly, the method
does not explore any grounding strategy which makes the generation of content prone to
hallucinated content.

Recognizing these limitations, our proposed method described in the following sections
utilizes a novel approach which focuses on a mechanism to iterative explore a scientific topic
while ensuring the generation of the content remains factual.

2.3 Knowledge Graph related literature

Figure 2.2: From unorganized information to KG [29]

Knowledge graphs (KGs) have emerged as an essential component in enhancing the per-
formance of LLM-based content generation tasks [30, 31, 32]. Recent studies emphasize that
presenting information to LLMs in structured relational triples can significantly improve their
ability to retrieve and reason with factual information compared to traditional prose formats
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[33, 34]. This structured representation allows models to focus clearly on precise factual rela-
tionships, reducing the likelihood of hallucinations and improving the reliability of generated
content [35, 36].

Graph-enhanced retrieval mechanisms, such as GraphRAG [37], leverage KGs to address the
limitations inherent to traditional retrieval-augmented generation (RAG) methods, particularly
for complex multi-hop queries requiring detailed reasoning and fact chaining [32, 38]. Studies
indicate that KGs are especially beneficial for question-answering and explanatory tasks, as
they facilitate the precise retrieval of relevant facts and structured reasoning paths, significantly
enhancing the depth and accuracy of generated answers [39, 40].

Additionally, recent work explore advanced methods for improving KG construction and
utilization, such as employing LLMs to dynamically expand and refine KGs based on retrieved
snippets [41, 42]. Such methods highlight the flexible and generalizable nature of LLMs in
constructing KGs without dependence on fixed ontologies or fine-tuned extraction models [43].

For knowledge graph-to-text generation, research has identified optimal formats for present-
ing structured information to LLMs. Studies comparing different serialization approaches found
that JSON format produces the best results, allowing LLMs to better understand the factual
nature of relationships compared to other structured formats [34]. This finding influences how
knowledge graphs should be formatted when used as input for content generation systems. The
process of transforming knowledge graphs back into coherent text requires careful consideration
of information density and organization. Research has shown that unordered triplet structures
facilitate precise retrieval of relevant facts, making them valuable for outline generation and
content planning [33]. However, for final content generation, the structured information often
needs to be combined with contextual details from original sources to produce natural, engaging
text.

Building upon these findings, we hypothesise that the benefit of using knowledge graphs
in automated scientific writing extends beyond simple fact retrieval methods. Specifically,
we propose that by constructing knowledge graphs from retrieved scientific documents, we can
identify conceptual gaps and relationships that guide iterative information gathering, ultimately
leading to more comprehensive and well-structured articles. This is the core mechanism of our
proposed method, details of which are explained in Section 3.3.

2.4 LLMs Evaluations
Evaluating the quality of automatically generated content presents significant challenges, par-
ticularly for long-form articles where traditional metrics like BLEU or ROUGE capture only
surface-level similarities [14]. Human evaluation, while considered the gold standard, is ex-
pensive, time-consuming, and difficult to scale for comprehensive assessments across multiple
quality dimensions [44]. This has led researchers to explore large language models as automated
evaluators.

Unlike traditional metrics that rely on lexical overlap, LLM evaluators can assess semantic
meaning, coherence, factual accuracy, and stylistic appropriateness. Research has demonstrated
that well-designed LLM judges can achieve strong correlations with human evaluators across
various tasks [15, 16, 17]. This capability is particularly valuable for evaluating scientific writ-
ing, where quality depends not just on fluency but on factors like factual accuracy, appropriate
use of technical terminology, logical organization, and proper citation practices.

The development of specialized evaluation models has advanced significantly beyond general-
purpose LLMs used for evaluation. Prometheus [45, 46] represents a notable example of this
specialization, being specifically fine-tuned for text quality assessment the model is able to
achieve assessments that closely match those of human evaluators. More recently, work has
shown that different models excel in different evaluation contexts. Research comparing vari-
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ous LLM judges found that GPT-4 Turbo outperforms Prometheus in certain scenarios [47],
while specialized models like FLASK [48] offer advantages in terms of cost-effectiveness and
accessibility for researchers with limited computational resources.

Research on long-form document evaluation has led to the development of specialized frame-
works like LR-1 [49], which focuses specifically on assessing whether generated outputs correctly
address complex questions based on reference materials. For scientific writing evaluation, re-
searchers have adapted methodologies from fact-checking literature to assess factual grounding
more systematically. Approaches like atomic claim verification [50] and coverage assessment
[51] provide more granular evaluation of how well generated content is supported by source
materials.

Given these capabilities, LLM evaluators exhibit critical limitations that researchers must
address. Self-preference bias represents a major concern, where models disproportionately fa-
vor content generated by themselves or related model families over external or human-written
content [52, 15, 53]. Position bias also affects evaluation quality, as the order in which content
is presented can substantially influence judgments [37]. Furthermore, despite high correla-
tion in many aspects, LLMs occasionally fail to capture subtle qualitative dimensions such as
redundancy or nuanced interpretability that human evaluators discern more effectively [53].

Addressing these challenges, we incorporate LLM-as-judge evaluations in our systematic
approach while validating these assessments through human expert evaluations. The details of
this evaluation methodology are explained in Section 4.5.
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Chapter 3

Method

3.1 SciWiki-2k Dataset
To evaluate the performance of our proposed topic generation framework, we developed SciWiki-
2k, a comprehensive dataset of high-quality Wikipedia articles focused on scientific concepts.
We constructed this dataset by identifying top trends on the ScienceDirect website [4] and
systematically selected the 50 most popular topics. To ensure diversity and further broaden
the scope of our dataset, we added an additional 50 topics from each domain. The final
dataset consists of 2,000 Wikipedia articles spanning over 20 domains that cover scientific-
related concepts. We make SciWiki-2k publicly available on HuggingFace1.

3.1.1 Dataset Construction
We curated SciWiki-2k by collecting scientific and high quality English Wikipedia articles. For
retrieving scientific articles we follow a 3 step process.

First, we match URLs of the respective Wikipedia articles to the corresponding concept at
hand. For instance:

• Carbon-14 → https://en.wikipedia.org/wiki/Carbon-14.

Second, to ensure that the selected articles meet a high-quality threshold, we leverage the
Prediction API of the Objective Revision Evaluation Service (ORES), a machine learning-based
assessment tool developed by the Wikimedia Foundation to asses the quality of an article [54].
Using the retrieved URLs, we obtain predictquality scores for each article. For instance:

• Carbon-14 → GA:
argmax{B: 0.12, C: 0.09, FA: 0.16, GA: 0.78, Start: 0.012, Stub: 0.004}

In SciWiki-2k, we only consider articles rated as “B” (B-Class), “GA” (Good Article), or
“FA” (Featured Article) and filter out articles with lower ratings, such as stubs or start-class
pages, as they often lack depth and require review to address citation issues, potential false
claims, and other quality concerns as indicated by the Wikipedia Content Assesment [55]. For
a detailed overview of the Wikipedia quality grading scheme, refer to Table 3.1.

Finally, we fetch the selected high-quality articles and parse their contents by extracting
the section headings along with the corresponding textual content. Other metadata, such as
figures and tables, are omitted during parsing.

1https://huggingface.co/SciWiki

8

https://en.wikipedia.org/wiki/Carbon-14
https://huggingface.co/SciWiki


Class Criteria Reader’s Experience Editing Suggestions
FA The article has attained fea-

tured article status by pass-
ing an in-depth examination
by impartial reviewers.

Professional, outstanding,
and thorough; a definitive
source for encyclopedic infor-
mation.

No further content addi-
tions should be necessary un-
less new information becomes
available; prose quality im-
provements are possible.

GA The article meets all good
article criteria, reviewed by
one or more impartial review-
ers.

Useful to nearly all read-
ers, with no obvious prob-
lems; approaching profes-
sional publication quality.

Some expert editing may
help; comparison with an ex-
isting featured article may
highlight missing content.

B The article meets all B-Class
criteria. It is mostly complete
but requires further work.

Readers are not left wanting,
but content may not be com-
prehensive for a serious stu-
dent or researcher.

Some content and style im-
provements are needed. Sup-
porting materials and compli-
ance with guidelines should
be considered.

Table 3.1: Wikipedia Article Quality Ratings

3.1.2 Filtering Stage
After the initial dataset construction, we implement a filtering stage to remove ambiguous or
irrelevant topics. This step ensures that each Wikipedia article accurately corresponds to the
specific, domain-focused topic presented in Science Direct.

a) Unrelated Articles
We implement a verification process to identify and remove instances where Wikipedia
URLs linked to ScienceDirect topics lead to unrelated content. First, we retrieve the
actual destination URL for each Wikipedia link and check whether it represents a 1:1
match with the original topic. When the retrieved URL does not match the expected
topic, we manually review these instances. For example, the topic Moral philosophy
redirects to the Wikipedia page https://en.wikipedia.org/wiki/Ethics, which was
flagged for manual checking and subsequently removed after review. However, other
instances such as Polygonum cuspidatum, which leads to the Wikipedia page https:
//en.wikipedia.org/wiki/Reynoutria japonica, are preserved in our dataset since the
topic is also known as Polygonum cuspidatum as cited in the Wikipedia page itself.

b) Interdisciplinary Coverage
We exclude Wikipedia articles that address a topic broadly across multiple domains. For
instance, Science Direct might present the concept Postmodernism solely within the con-
text of Psychology [56], whereas the corresponding Wikipedia article may cover the same
concept across various fields such as philosophy, literature, or social theory as written in
the actual Wikipedia article. This discrepancy where Wikipedia articles span multiple do-
mains, makes fair evaluation difficult. Consequently, we exclude such domain-overlapping,
ambiguous or completely unrelated articles from the SciWiki-2k dataset. An example of
this scenario is shown in Appendix B.

3.2 Scientific Source Collection
To generate high-quality, trustworthy, and scientifically accurate topic pages, our approach
relies on retrieving relevant snippets from Elsevier’s ScienceDirect corpus. These snippets
form the foundational knowledge source from which the multi-agent LLM framework generates
synthesized, coherent content.
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3.2.1 Preprocessing
Documents in the collection undergo a preprocessing pipeline to enhance their quality, manage
context-window limitations, and eliminate redundancy. Specifically, we perform the following
operations on all retrieved snippets:

a) Chunking
Snippets that exceed the maximum token length of 512 tokens are split into smaller
chunks to preserve their semantic integrity. We achieve this by first encoding the text
snippets into tokens using the embedding model snowflake-arctic-embed-m-v2.02. If a
snippet surpasses the 512-token threshold, we split it at sentence boundaries, ensuring no
sentence is broken mid-word. Short snippets containing fewer than 20 words are excluded
from our dataset, as they typically lack sufficient informational value.

b) Deduplication
Due to potential overlaps across retrieved snippets, we remove those snippets where iden-
tical content is found. To account for minor textual variations, we identify cases where
snippets appear different due to small modifications at the beginning of their text. Specifi-
cally, the addition of reference numbers, chapter numbers, or section headings that precede
otherwise identical content. For example, a snippet beginning with ”3.1 Plant genetics
involves...” versus ”Plant genetics involves...” contains the same substantive information.
These instances are manually reviewed and filtered to prevent redundancy.

3.2.2 Vector Store Creation

Model Name # dim BEIR MIRACL CLEF (Full)

snowflake-arctic-m-v2.0 768 55.4 55.2 53.9
snowflake-arctic-m 768 54.9 24.9 29.1
me5 base 1024 51.2 48.8 48.1
bge-m3 (BAAI) 1024 48.8 56.8 —
gte (Alibaba) 768 51.1 52.3 53.1

Table 3.2: Comparison of models across various retrieval tasks. Source at [57].

After preprocessing, the cleaned snippets are transformed into high-dimensional vector em-
beddings and indexed in Qdrant, an open-source vector database built for high-performance
vector search with advanced filtering capabilities [58].

Metadata Storage and Filtering

To enhance retrieval efficiency, each snippet stored in Qdrant is enriched with metadata to
facilitates structured querying and filtering. As shown in Figure 3.1, the metadata includes:

• URL Identifiers: these are internal identifiers that map each snippet to its source
article, journal, or chapter. As shown in Figure 3.1, they consist of three components:
an internal identifier (e.g., B9780128094358000354), a unique code describing the source
type (ce section s0010), and a suffix indicating the chunking strategy explained earlier
(chunk2). These URL identifiers are used throughout the topic page’s content as in-line
citations, providing groundedness for later verification purposes (see Section 4.5).

2https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2
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Figure 3.1: Example entry at Qdrant

• Domains and Topics: these are the metadata fields that organize the vector store
and control the scope of information retrieval. Concretely, each snippet belongs to a
specific domain and topic. When generating a topic page, the framework searches only
within the relevant domain collection rather than the entire corpus. For instance, when
creating content about Machine Learning, the system retrieves information exclusively
from the Computer Science domain. The complete list of topics per domain can be found
in Tables 1–3.

Figure 3.2 illustrates the complete embedding and storage workflow described above. The
diagram shows how preprocessed snippets are processed by the embedding model to generate
vector representations after completing the chunking and deduplication operations. These
vectors are then stored in Qdrant along with their associated metadata including domain,
topic, and URL identifiers.

Figure 3.2: Sequence diagram for the embedding process

Having constructed this vector database containing embedded snippets with their associated
metadata, we now explain how our framework utilizes this knowledge base to retrieve relevant
information for generating topic pages.
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3.3 Apollo Framework
We present apollo, an autonomous LLM-based framework capable of automating the gener-
ation of Topic Pages. Apollo emulates the slow-thinking process how humans would write an
article e.g. by (i) searching relevant information for the given topic, (ii) organizing this in-
formation into a coherent outline and (iii) iteratively refining the sections that compose the
article. An overview of the building blocks of our framework is provided in Figure 3.3.

Figure 3.3: Overview of apollo, our three-step pipeline for topic-page creation.

3.3.1 Problem Formulation
Let a user supply a topic T ∈ T and a domain D ∈ D, where T can be any of the scientific
topics within the 20 academic domains as shown in Tables 1–3. Let the domain-specific vector
collection be:

CD = { s1, s2, . . . , sN},

where each snippet si is a entry point (see Figure 3.1) defined as:

si =
〈
ci, ei, mi

〉
,

ci : raw text,
ei ∈ Rd (embedding vector),
mi : ⟨di, ti, ui⟩ (metadata: domain, topic, URL).

The goal is to generate a coherent topic page A that explains topic T (within domain D) by
drawing evidence exclusively from the domain-specific vector store CD. Formally, we create a
topic page using a three-step process:

(i) Knowledge Curation. Retrieve relevant information to construct the topic page

I = Retrieve(T, CD),

(ii) Outline Generation. Construct an outline conditioned on the retrieved information,
topic and domain

O = Construct(I, T ),

(iii) Article Generation. Write the full article based on the outline and all the informa-
tion gathered:

A = Write(O,K),
where K ⊆ CD is the curated knowledge base obtained by the knowledge-curation
module (Section 3.3.2).

The detailed implementation of these components is explained in the following sections and
the mathematical notation and symbols used throughout this framework are summarized in
Appendix C.
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3.3.2 Knowledge Curation
Analogous to a systematic research process [59, 60], apollo starts the creation of a topic page
by first gathering relevant information for the given topic. While searching information might
seem a straightforward process (e.g., querying the vector store with query q and retrieving
the top-k most relevant snippets to create the article A), this approach has a fundamental
limitation. Such a simple retrieval strategy may miss valuable related information that could
be discovered through more exploratory search processes, similar to how researchers iteratively
refine their understanding by following citation trails and exploring interconnected concepts
[61, 62].

To address this problem, we propose a novel system that explores and expands the current
understanding of topic T through an iterative process. Our approach organizes retrieved in-
formation into knowledge graphs, which are then used to generate new, focused queries that
retrieve additional relevant snippets. Figure 3.4 illustrates this process.

Figure 3.4: Knowledge-curation pipeline. Starting from an initial query, the system extracts
relational triplets, merges them into a knowledge graph, generates new query terms from that
graph, and repeats the process for m iterations.

Initialization Stage

Step 1: Initial Query Processing. Given topic T , we start the process of gathering relevant
information by querying the vector store with q := T . We perform retrieval from the domain-
specific collection:

I0 = Retrieve(T, CD), (3.1)
where I0 = {si1 , si2 , . . . , sik

} ⊆ CD represents the top-k most relevant snippets based on
cosine similarity between the topic embeddings and the snippet embeddings {ei1 , ei2 , . . . , eik

}.

Step 2: Knowledge Graph Construction. For each retrieved snippet si ∈ I0, we apply an
extraction operator

Φ : si 7−→
{

(h, r, t)
∣∣∣ h, t ∈ E , r ∈ R

}
, (3.2)

where an LLM (Prompt 1) extracts triplets of the form (h, r, t) comprising of a head entity
h, a relation label r, and a tail entity t; E is the universe of entities and R is the set of relation
types. The extracted triplets define a snippet-level sub-graph Gi = (Vi, Ei) where:

• Vi ⊆ E – entities (vertices) found in si,

• Ei = {(h, r, t) | h, t ∈ Vi, r ∈ R} – edges linking those entities.
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Essentially, each Gi captures the core conceptual structure of si; its vertices and edges
serve later to formulate follow-up queries that either (i) deepen our understanding of a concept
present in the snippet or (ii) broaden the overall coverage of topic T by exploring related con-
cepts and entities identified in the knowledge graph (see Expansion Stage 3.3.2)

Step 3: Graph Aggregation and Normalization. Having extracted individual subgraphs
from each retrieved snippet, we now combine these into a unified knowledge representation.
We construct the initial knowledge graph by aggregating all subgraphs:

G0 =
k⋃

i=1
Gi =

(
k⋃

i=1
Vi,

k⋃
i=1

Ei

)
, (3.3)

Because this aggregation may result in duplicate or semantically equivalent entities across
different subgraphs, we apply a normalization function η:

G∗
0 = η(G0) (3.4)

where η is an LLM-based normaliser that merges semantically equivalent entities and their
associated edges (e.g. “LLM” and “large-language model”).

Expansion Stage

Up to this point we have produced a shallow knowledge graph G∗
0 that captures only the

information reachable from the initial query q:=T . In practice, human investigators would
now “zoom-in” on promising concepts and “zoom-out” to related areas that have not yet been
covered. We emulate this behaviour with two co-operating LLM agents that iterate over the
graph, identify knowledge gaps, and issue new query, retrieval cycles. The loop is repeated
until a user-defined maximum depth m is reached (we use m=4 in all experiments).

Agent 1 – Post-doc Researcher. Inspired by the “role-playing” strategy of [63], the first
agent takes the normalised graph at depth m, G∗

m, and produces a set of focused research
questions that would deepen and broaden the current understanding of topic T :

Qm = Ψ
(
G∗

m, MQ

)
= { (qj, ρj)}n

j=1, (3.5)
where Ψ is an LLM (Prompt 2) that (i) inspects structural signals in G∗

m, (ii) selects under-
explored or high-impact entities/relations, and (iii) formulates n=10 questions: nd=5 “in-
depth” questions that target specific underexplored concepts and nb=5 “breadth” questions
that branch into adjacent areas. Each question qj is accompanied by a rationale ρj that justifies
why pursuing this direction could be fruitful. The memory set MQ stores all questions asked
so far, preventing repetitions across iterations.

Agent 2 – Reflective Query Synthesiser. The second agent receives Qm and, after re-
flecting on every (qj, ρj) pair, synthesises a small and diverse list of query terms:

Lm = Λ
(
Qm, ML

)
= {ℓ1, ℓ2, . . . , ℓt}, (3.6)

where Λ is an LLM-based operator (Prompt 3) that (i) decomposes each question into its
salient entities, relations, and context, (ii) paraphrases or expands those elements into concrete
search strings, and (iii) filters out any term that already appears in the query-memory ML.

In our implementation we set t≤10 to balance between depth-oriented and breadth-oriented
terms. Similarly, we store all the query terms generated by this agent to prevent repetition.
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Retrieval & Graph Update. Using the generated query terms Lm we perform retrieval
operations to obtain new information:

Im+1 = Retrieve
(
Lm, CD

)
\
( m⋃

j=0
Ij

)
, (3.7){

Gi

}
si∈Im+1

= Φ
(
Im+1

)
, (3.8)

G∗
m+1 = η

(
G∗

m ∪
⋃

si∈Im+1

Gi

)
, (3.9)

where (1) already-seen snippets are filtered out to guarantee novel evidence, (2) Φ extracts
triplets from every new snippet as in (3.2), and (3) η normalises and merges the enlarged graph
exactly as described in Section 3.3.2. Both MQ and ML are updated after each iteration:

MQ ←MQ ∪ {qj}n
j=1, ML ←ML ∪ {ℓj}t

j=1. (3.10)

Stopping Criterion. The expansion process continues iteratively until reaching a predefined
maximum depth m. The resulting knowledge graph Gm = (Vm, Em) captures entities and
relations relevant to (T, D), and the union of all retrieved snippets:

K =
m⋃

j=0
Ij,

constitute the curated knowledge base K that is handed to the outline and article-generation
phases (cf. Eq. (iii) in Section 3.3).

Pseudo-code. Algorithm 1 (Appendix D) lists the pseudo-code for the complete expansion
procedure, including the interplay between the agents, the memory-aware query generation,
batched retrieval, triplet extraction, and incremental graph normalisation.

3.3.3 Outline Generation

Figure 3.5: Outline and article generation pipeline. The final knowledge graph G∗
m is trans-

formed into a hierarchical outline, while the curated knowledge base K is prepared for section-
specific retrieval. The Writer and Reviewer agents collaborate iteratively to produce factual,
well-referenced content for each section.

Having constructed a comprehensive knowledge graph G∗
m that encodes hierarchical rela-

tionships between entities relevant to topic T , we now transform this structured representation
into a coherent article outline. The knowledge graph provides a structural foundation through
its entity relationships and hierarchical patterns.
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Outline Construction. We generate the article outline by applying an LLM-based trans-
formation to the final knowledge graph:

O = Ω(G∗
m, T ), (3.11)

where Ω is an LLM (Prompt 4) that analyzes the graph structure to produce a hierarchical
outline O = {h1, h2, . . . , hp} with p sections. Each section hi may contain subsections, forming
a tree structure that reflects the conceptual organization discovered during knowledge curation.

3.3.4 Article Generation
The article generation phase transforms the outline O into a comprehensive, factual article
A through an iterative process involving two collaborative agents: a Writer and a Reviewer.
For each section hi ∈ O, we perform section-specific retrieval, relevance filtering, and iterative
content refinement.

Section-Specific Information Retrieval

For each section hi, we use the section heading as a query to retrieve potentially relevant
snippets from our curated knowledge base. Since different sections may retrieve overlapping
snippets (e.g., sections on related subtopics might retrieve similar foundational information),
we employ a two-step process to ensure precision:

Ri = Retrieve(hi,K), (3.12)
where Ri contains the top-k snippets based on cosine similarity. To ensure each snippet

contributes valuable information specifically for section hi, we apply an LLM-based relevance
filter:

Si = {s ∈ Ri | Θ(s, hi) = relevant}, (3.13)
where Θ is an LLM (Prompt 5) that validates whether snippet s provides substantive

information for writing about section hi. This filtered set Si forms the supporting evidence for
generating section content.

Iterative Content Generation

We employ two specialized agents that collaborate to produce high-quality, well-referenced
content. For each section hi, let a

(r)
i denote the article section generated at revision r.

Agent 3 – Factual Writer. The Writer agent generates content for section hi based on the
supporting evidence:

a
(0)
i = Γ(hi,Si), (3.14)

where Γ is an LLM (Prompt 6) that: (i) synthesizes information from Si into well-structured
text, (ii) maintains a neutral, factual tone without expressing opinions, (iii) includes inline
citations linking claims to their source URLs from the snippet metadata.

For subsequent revisions, the Writer (Prompt 7) revises the content based on feedback:

a
(r+1)
i = Γrevise(a(r)

i ,F(r)
i ,Si), (3.15)

where F(r)
i is the structured feedback generated by the Reviewer at revision r.
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Agent 4 – Critical Reviewer. The Reviewer agent evaluates the generated content and
maintains a feedback memoryMF to track revision items across iterations. The review process
is formalized as:

F(r)
i = π(a(r)

i ,Si,MF ), (3.16)
where π is an LLM (Prompt 8) that: (i) verifies that all claims present in the generated

section are properly supported by the cited sources, (ii) identifies gaps, unsupported statements,
or logical inconsistencies, (iii) provides thorough feedback guiding the Writer agent to fix, add
citations, or rewrite content, and (iv) produces a structured feedback list F(r)

i = {f1, f2, . . . , fq}
with actionable revision items.

In the first pass (r = 0), the Reviewer generates comprehensive feedback. In subsequent
iterations, it consults MF to remove addressed items, re-emphasize unresolved issues, or rec-
ommend additional citations where needed.

Revision Loop. The revision process continues until either: (i) the Reviewer determines all
feedback items have been satisfactorily addressed, i.e., F(r)

i = ∅, or (ii) a maximum number of
revisions rmax = 3 is reached.

Article Assembly. The final article is constructed by concatenating all refined sections while
preserving the hierarchical structure from the outline:

A =
p⊕

i=1
a

(r∗
i )

i , (3.17)

where r∗
i denotes the final revision number for section hi, and⊕ represents the concatenation

operator that respects the outline hierarchy. The resulting article A provides a comprehensive,
factual treatment of topic T within domain D, with all claims supported by evidence from the
curated knowledge base K.

Pseudo-code. The complete algorithmic implementation of the Apollo framework is detailed
in Appendix D, which provides the step-by-step procedure for all three phases described above.
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Chapter 4

Experiments

4.1 Dataset
To evaluate the articles generated by our method, we construct SciWiki-100, a benchmark
dataset sampled from our larger SciWiki collection. Following prior work [11, 64], we randomly
select 5 topics from each of the 20 scientific domains, resulting in 100 diverse topics spanning
across all the domains from ScienceDirect. We use this subset to keep evaluation time man-
ageable and low LLM API costs. For each topic in SciWiki-100, we generate Topic Pages using
apollo and all baseline methods, then evaluate these generated articles against their corre-
sponding human-written Wikipedia pages and a set of automatic metrics as described in our
evaluation setup (Section 4.5).

Statistic SciWiki-100 SciWiki-2k

Avg. Number of Sections 7.4 7.8
Avg. Number of All-level Headings 20.2 19.9
Avg. Length of a Section (words) 442.3 483.3
Avg. Length of Article (words) 3425.0 3672.7
Avg. Number of References 64.1 71.5

Table 4.1: Comparison of average statistics between the SciWiki-100 and SciWiki-2k datasets.

4.2 Baselines
To assess the effectiveness of our method, we compare against the following approaches:

1. Outline-driven RAG (oRAG) [11]: a retrieval-augmented generation baseline that
follows a two-stage approach. First, given a topic, oRAG generates using an LLM a
structured outline to guide the content generation of the article. Then, it processes each
section independently by searching for relevant information specific to that section’s title.
Lastly, with the retrieved snippets, the article is created in a section-by-section manner,
writing each section using the relevant retrieved content.

2. STORM [11]: a system that generates Wikipedia-like articles through simulated conver-
sations. Given a topic, STORM first identifies different perspectives and simulates conver-
sations between LLMs assigned with specific perspectives. One agent asks perspective-
guided questions while another provides answers grounded on retrieved sources. The
information from these conversations is organized into an outline, which then guides the
section-by-section generation of the final article.
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3. OmniThink [28]: a framework that employs a hierarchical tree structure to explore a
given topic. The system iteratively builds a tree by identifying sub-topics and collecting
relevant information for each branch. The framework then uses the information accumu-
lated throughout the tree structure to generate an outline, which guides the section-by-
section writing of the final article as the previous two baselines.

4.3 Models
We use GPT-4o-mini [65] as the primary LLM backbone for all methods in our experiments.
This model features a context window of 128K input tokens and a maximum output length of
4,096 tokens [66]. We access this model through Azure API calls using the deployment version
2024-02-15-preview [67]. For evaluation purposes, we employ the following models:

Claude-3.7-Sonnet [68]: We employ this model from Anthropic’s Claude series, which fea-
tures a 200K token context window with 8,192 maximum output tokens, for outline and article
quality evaluation. We access the model through Amazon Bedrock using the model version
claude-3-7-sonnet-20250219-v1:0 [69].

Llama-3.3-70B [70]: We utilize this 70-billion parameter model from Meta, which provides
strong performance on complex reasoning tasks, alongside Claude-3.7-Sonnet for knowledge
graph evaluation. We access the model through Amazon Bedrock using the model version
llama3-3-70b-instruct-v1:0 [71].

M-Prometheus-7B [72]: A specialized evaluation model fine-tuned from the Qwen2.5-Instruct
model [73] for assessing text quality across multiple dimensions. We use this model as our pri-
mary LLM-as-judge for article and outline quality evaluation. The model is downloaded from
HuggingFace1 and run locally.

GPT-4o [65]: OpenAI’s larger model used for hallucination detection. Since all content is
generated by GPT-4o-mini, we use a different model to avoid self-preference bias where LLMs
tend to favor their own outputs [52, 15]. This model has a 128K context window and is accessed
through Azure API using the model version 2024-12-01-preview [67].

4.4 Implementation Details

Component Configuration

LLM Backbone gpt-4o-mini, temperature 1.0, top p = 0.9
Retrieval Qdrant (HNSW, M = 16, ef = 128); cosine similarity

over snowflake-arctic-embed-m-v2.0 embeddings
Knowledge-curation loop Depth m = 4; 5 depth-oriented + 5 breadth-oriented

questions per depth, max 10 new query terms
Writer/Reviewer loop Max 3 revisions; reviewer memory resets per section
Hardware AWS g5.2xlarge instance (24GiB GPU, 8 vCPUs)

Table 4.2: Apollo implementation configuration details.
1https://huggingface.co/Unbabel/M-Prometheus-7B
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Table 4.2 summarizes the key configuration parameters for the framework implementation.
Given the need for extensive experimentation, we selected GPT-4o-mini as our backbone LLM
due to its low cost per API call [74]. Following the configuration used in previous baselines
[11], we set the temperature to 1.0 to encourage diverse content generation and top-p to 0.9 to
control output randomness.

For retrieval, we employed Qdrant’s HNSW index with M = 16 and ef = 128 to retrieve
top-k snippets. We set k = 3 unless otherwise specified. We empirically tested various ef values
(64, 128, 256, 512) and found that the selected parameters with scalar quantization maintained
98.67% recall accuracy while improving retrieval speed by 12% [75]. For embeddings, we selected
snowflake-arctic-embed-m-v2.0 based on their performance across retrieval benchmarks: 55.4
BEIR, 55.2 MIRACL, and 53.9 CLEF (Table 3.2).

The knowledge curation process was limited to m = 4 iterations to ensure comparable
retrieved snippets to the baseline methods. Specifically, we have 5 initial retrieved snippets
then followed by 4 iterations of the expansion stage described in Section 3.3.2, which in total
adds up to a maximum of 125 retrieved snippets (5 + 10×3×4). Following recent work [76, 77],
we configured 5 depth-oriented and 5 breadth-oriented questions per iteration. The reviewer’s
memory resets per section to maintain independent content evaluation, and the reviewer-writer
feedback loop runs for 3 steps.

4.5 Evaluation Setup
As is shown in Figure 3.3, composing a coherent Topic Page involves a multistage process. To
evaluate how each aspect of our framework contributes to the generation of a complete Topic
Page, we examine the following elements and describe the corresponding metrics in Section 4.6:

Knowledge Curation Quality: We assess the effectiveness of our knowledge curation mod-
ule by measuring information diversity, number of unique sources retrieved, and the quality of
the constructed knowledge graph.

Outline Quality: In accordance to the evaluation criteria utilized by our baseline methods
we evaluate the quality of the outline generated through automatic metrics (soft recall, entity
recall) and LLM-as-a-judge assessments [72] across different dimensions (content guidance,
hierarchical clarity, and logical coherence). Additionally, we further evaluate the quality of the
generated outline using human evaluators using the same metrics as the LLM-judges.

Article Quality: We employ both automatic metrics (ROUGE scores, entity recall) [78, 79]
and an LLM-as-a-judge across different dimensions (interest, organization, relevance, depth) to
evaluate the generated articles against human-written articles found in SciWiki-100. Human
evaluators also assess article quality using the same dimensions employed by our LLM-judges.

Citation Quality: We evaluate whether the content generated by our method remains
grounded in the provided scientific snippets. This assessment involves measuring factual ac-
curacy by examining which claims are supported by in-line citations (hallucination rate) and
determining how many sections present in the outline are covered by factual written content
(coverage). Human evaluators further validate the factuality of in-line citations using identical
metrics to our automated evaluations.

The details of the evaluation metrics discussed in this section are described below.
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4.6 Metrics
Information Diversity. Let I = {s1, . . . , sn} be the set of snippets retrieved during knowl-
edge curation and let ei be the snowflake-arctic-embed-m-v2.0 embedding of snippet si. We
compute:

Div(I) = 1− 1
n(n− 1)

n∑
i,j=1
i ̸=j

cos
(
ei, ej

)
, n = |I|.

where cos(ei, ej) denotes the cosine similarity between embeddings ei and ej. The score lies
in the interval [0, 1] for normalized text embeddings. A higher value indicates the retrieved
snippets are more diverse, suggesting the system explored the topic from a wider range of
perspectives; a lower value signals redundancy and limited exploration.

Knowledge Graph Quality. To evaluate whether the extracted knowledge graphs effectively
capture information from retrieved snippets, we adopt the Measure of Information in Nodes
and Edges (MINE) benchmark2. For every document in the MINE benchmark, we extract
knowledge graphs using KG-Gen [63], LightRAG [80], and our method, then query each graph
with the benchmark’s reference facts.

Given a query fact f , we compute semantic similarity between f and all graph nodes using
the same embedding model described in Section 4.4, retrieve the top-k = 10 most similar
nodes, and collect all relationship triples involving these nodes and their neighbors within 2-
hops. Following the benchmark protocol, we use LLM evaluation to determine whether f can
be inferred from the collected triples, as this requires semantic reasoning beyond exact string
matching. To ensure reliability, we employ three independent evaluators (Claude-3.7-Sonnet,
Llama-3.3-70B-Instruct, GPT-4o-mini) and report results in Figure 5.2.

Soft Recall. To assess outline quality, we compare generated section headings against ref-
erence headings from SciWiki-100 articles. Given reference headings Href = {h1, . . . , hm} and
generated headings Hgen = {h′

1, . . . , h′
n}, we compute:

SoftRecall = 1
m

m∑
i=1

max
j∈{1,...,n}

cos(ehi
, eh′

j
),

where eh denotes the Sentence-BERT embedding of heading h.

Entity Recall. We measure entity coverage at both outline and article levels. For outlines,
let Eref be the set of named entities extracted from reference headings using FLAIR NER [81],
and Egen be the entities from generated headings. For articles, these sets represent entities from
the full reference and generated content respectively. Entity recall is computed as:

EntityRecall = |Eref ∩ Egen|
|Eref|

.

ROUGE Scores. We evaluate article quality using ROUGE-1 (R1) and ROUGE-L (RL)
F1 scores [78] against SciWiki-100 reference articles. R1 measures unigram overlap, while RL

captures the longest common subsequence between generated and reference content.
2https://github.com/stair-lab/kg-gen
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AB Preference Test. To evaluate outline quality through direct comparison, we conduct
pairwise preference tests between Apollo and the best baseline method. For each topic, two out-
lines are presented to three evaluator models (Llama-3.3-70B-Instruct, GPT-4o-mini, Claude-
3.7-Sonnet) in randomized order to mitigate position bias. Each evaluator assigns scores (1-5)
to both outlines based on clarity, relevance, completeness, and structure, then indicates their
preferred outline.

LLM-as-a-Judge Assessment. We employ M-Prometheus-7B [82] to conduct qualitative
evaluations for outlines and articles using structured rubrics. For outline assessment, we eval-
uate three dimensions: Content Guidance, Hierarchical Clarity, and Logical Coherence. For
article assessment, we evaluate four dimensions: Interest, Organization, Relevance, and Depth.
Each criterion uses a 5-point scale (1-5) where each score level has specific descriptions that
guide the model’s evaluation. For details on what each criterion measures, see Appendix F.

Hallucination Assessment. Following FActScore’s approach [50], we evaluate factual ac-
curacy through atomic claim verification. For each article, we extract atomic claims using an
LLM. Each claim is then verified against the snippet content si corresponding to the article’s
in-line citations through entailment checking. The hallucination rate represents the proportion
of unverified claims:

Hallucination = 1− |Cv|
|C|

where Cv represents verified claims and C the total number of claims.

Coverage Assessment. Following ICAT’s coverage methodology [51], we assess whether
content across article sections is grounded in retrieved snippets. We measure the proportion
of sections containing at least one verified claim, where sections without any verified claims
indicate the LLM generated content without evidence:

Coverage = |Sv|
|S|

where Sv represents sections with at least one verified claim and S the total number of sections.

Human Assessment. Additionally to further compare the results obtained by the qualitative
assessments from our LLM-judges we carry out an study to see how humans would grade the
generated topic pages using the same set of evaluation rubrics as shown in Appendix F. To
this end, we contacted the Data Discovery and Enrichment department at Elsevier to help
us grade the generated topic pages by our framework and the second best scoring baseline
method. To guide the Knowledge Representation Specialists, or named herein Subject human
experts (SMEs) how to grade our topic pages, we prepare the platform Genex (Appendix G)
which contains the the necessary information to follow the evaluation. Specifically, we ask
each evaluator to read the topic page generated by each method and provide detailed feedback
on what they observed while grading the topic page. The comment box interface, as shown
in the evaluation platform (Figure 3–4), is then used to analyse the alignment between the
LLM-judges and human evaluators. The results of this assessment are discussed in Section 5.5
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Chapter 5

Results and Analysis

In this Chapter, we evaluate the performance of our proposed framework against the baseline
methods across multiple dimensions to assess the quality of the generated topic pages. We
first evaluate the effectiveness of our knowledge curation approach in Section 5.1, examining
information diversity, unique source coverage, and knowledge graph quality. Subsequently, we
analyse the quality of the generated outlines in Section 5.2, evaluating both automatic metrics
(soft recall, entity recall) and qualitative assessments through LLM-as-judge evaluations. We
then present a comprehensive evaluation of article quality in Section 5.3, comparing Apollo’s
generated content against human-written Wikipedia articles using ROUGE scores, entity cov-
erage, and multi-dimensional quality assessments across interest, organization, relevance, and
depth. Furthermore, Section 5.4 examines citation quality and factual grounding, analyzing
hallucination rate and content coverage to determine how well our framework maintains proper
source attribution. Finally, Section 5.5 presents human evaluation results where subject matter
experts assess the generated articles using the same evaluation rubrics as the LLM-as-judge
assessments shown in Appendix F.

5.1 Knowledge Curation
Knowledge curation forms the first step of our topic page generation pipeline. Here, the different
frameworks outlined in Section 4.2 gather diverse and relevant information which is later used
to write the different sections of the article. The performance of this phase directly influences
the quality of all subsequent components, as insufficient or redundant information retrieval can
lead to articles with limited depth and interest (Table 5.5) and poor factual grounding (Table
5.6). We are therefore interested in comparing our iterative graph-based expansion method
against the baseline approaches.

Method APOLLO OmniThink STORM oRAG

Num Unique URLs ↑ 105.712 83.27 60.12 45.45
Info Diversity (%) ↑ 60.81 54.74 42.23 33.02

Table 5.1: Average number of unique URLs retrieved by each method.

Table 5.1 presents a quantitative comparison of knowledge curation performance across all
methods. We can see from the table that Apollo consistently scores highly across both metrics,
retrieving an average of 105.71 unique URLs compared to the best baseline (OmniThink at
83.27) and achieving the highest information diversity score of 60.81% compared to 54.74% for
OmniThink.
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Figure 5.1: Information Diversity shown in a 2-dimensional PCA space where snippets gather
from the Knowledge Curation phase are displayed to show the Density Area covered by the
different frameworks.

To analyse the semantic variety of retrieved snippets, we computed embeddings for all
snippets collected by each framework and projected them into a 2-dimensional PCA space,
as shown in Figure 5.1. In this reduced dimensional space, each snippet corresponds to a
point where proximity indicates semantic similarity. To visualize the semantic coverage of each
method, we computed hulls that encircle the outermost data points for each framework and
displayed these as filled regions representing the total semantic area covered. As shown by
the boundaries of each method, Apollo achieves the largest density area (15.25), compared to
OmniThink (12.82) and STORM (11.67). This broader semantic coverage demonstrates that
our method explores more diverse areas, increasing the breadth of available knowledge for article
creation. This broader semantic coverage is critical for generating high-quality articles. As
demonstrated in Tables 5.4–5.5, systems with limited exploration produce articles with reduced
quality scores. Additionally, when these methods lack the sufficient retrieved information to
support their writing, they tend to rely on the internal LLM’s knowledge rather than grounding
their content generation in the snippets retrieved. As our experiments show, this results in
higher hallucination rates (Figure 5.4).

5.1.1 KG Quality
Central to our iterative expansion method is the knowledge graph construction process. These
graphs serve as the structured representation from which we identify information gaps and
generate new queries (see Section 3.3.2). If our framework fails to effectively capture relevant
information from retrieved snippets into knowledge graphs, subsequent exploration will be
limited, resulting in poor snippet diversity (Table 5.1) and reduced article quality (Table 5.5).
We therefore evaluate whether our method successfully synthesizes textual information from
scientific snippets into meaningful knowledge graph representations. Since our KG construction
approach mirrors GraphRAG methods in transforming documents into structured knowledge
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[40, 77, 83], we employ the MINE benchmark [84], which specifically measures document-to-KG
synthesis quality.

Backbone Methods MINE Scores

Normalized Non-Normalized

Claude-3.7-Sonnet
Ours 0.714 0.701
KG-Gen 0.725 0.680
LightRAG 0.709 0.705

Llama-3.3-70B
Ours 0.620 0.610
KG-Gen 0.580 0.550
LightRAG 0.535 0.542

GPT-4o-mini
Ours 0.501 0.486
KG-Gen 0.392 0.388
LightRAG 0.432 0.428

Table 5.2: Comparison of MINE scores across different LLM backbones and methods. Bold
indicates the best performance and underlined indicates the second-best performance for each
LLM backbone. Gray cells highlight our proposed method.

Table 5.2 and Figure 5.2 present the performance comparison of our method against state-
of-the-art approaches across three different LLM backbones [65, 68]. As shown in Table 5.2, our
method performs differently depending on the underlying model strength. With Claude-3.7-
Sonnet, our approach achieves a MINE score of 0.714 (normalized), placing second behind KG-
Gen’s 0.725 while surpassing LightRAG’s 0.709. The performance pattern shifts considerably
with less capable models, where our method consistently outperforms both baselines. Specif-
ically, with Llama-3.3-70B, our approach leads with 0.620, and continues with GPT-4o-mini,
where our method achieves 0.501, significantly outperforming both KG-Gen and LightRAG.

Figure 5.2: Assessment of the quality of the Knowledge Graph generated across different models
using the MINE Score.

Given the outcomes observed in Figure 5.2, we can see that stronger models consistently
yield better results across all methods. Since our retrieved snippets lack ground truth anno-
tations, we use the MINE benchmark on scientific articles to validate our knowledge graph
quality. The strong performance on MINE indicates that our method can effectively extract
and organize information from documents. This improved information extraction translates to
broader source coverage, as evidenced by the higher unique-URL counts and diversity scores in
Table 5.1.
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5.2 Outline Quality
We now turn our attention to analyse how the outlines generated by our framework compare
against baseline methods. The outline serves as the structural blueprint that guides the writing
process [85], organizing the curated knowledge into a logical hierarchy of sections and subsec-
tions. A well-structured outline is essential for producing coherent articles, as it determines
how information is synthesized throughout the document [86, 87]. We therefore evaluate outline
quality using both automatic metrics and qualitative LLM-as-a-Judge assessments.

Backbone Methods
Automatic Metrics LLM-as-Judge

Soft
Recall

Entity
Recall

Content
Guidance

Hierarchical
Clarity

Logical
Coherence

GPT-4o-mini

oRAG 86.42 37.44 3.22 3.97 3.86
STORM 87.63 37.10 3.39 3.95 3.87
OmniThink 88.31 37.74 4.03 3.99 3.98

APOLLO 91.82† 38.52 4.16† 4.00 4.01†

w/o Reflection 80.75 36.14 3.36 3.93 3.82

Table 5.3: Outline quality comparison between different frameworks. Soft Recall and Entity
Recall are measured against SciWiki-100 outlines. The LLM-as-judge used to run these eval-
uations is M-Prometheus-7B. † denotes significant improvements (p < 0.05) from paired t-tests.

Table 5.3 shows the quantitative results for outline evaluation. Apollo achieves the highest
scores in both automatic metrics, with Soft Recall reaching 91.82 compared to OmniThink’s
88.31, and Entity Recall of 38.52 versus 37.74. Notably, while Entity Recall shows no statistical
significance due to exact word matching, this indicates our generated outlines are not direct
copies of Wikipedia content. In contrast, Soft Recall demonstrates statistical significance,
indicating that our knowledge graph-driven generated outline shows better semantic alignment
with human-written articles as compared to the baseline methods.

For the qualitative assessment (right side of Table 5.3), Apollo outperforms all baselines
across all dimensions, with statistically significant improvements in Content Guidance (4.16 vs
4.03) and Logical Coherence (4.01 vs 3.98) as compared to the OmniThink framework. These
results show that the structured information encoded in the knowledge graph aids in generating
outlines with better hierarchical organization, as is reflected in the favourable evaluation by
M-Prometheus-7B across these three dimensions (Appendix F).

To go one step further, we carry out an AB preference test where we provide the outline
generated by Apollo and compare against the outlines generated by the second-best baseline:
OmniThink. We report the findings of this test in the following bar plot:

Figure 5.3 shows the results from this preference test. Across all evaluator models, Apollo
is consistently preferred over Omnithink. Claude-3-7-sonnet demonstrates the strongest pref-
erence for Apollo (78.4% win rate), while llama-3-3-70B and gpt-4o-mini show more moderate
but still clear preferences (64% and 64.8% respectively).

Ablation Analysis : To better understand the contribution of our iterative expansion
methodology, we conducted an ablation study comparing Apollo against a version without
the reflective component (w/o Reflection). As described in Section 3.3.2, Agent 1 generates
research questions from the knowledge graph while Agent 2 reflects on these questions, filtering
and tailoring them for the retrieval process. Removing this reflective component causes sub-
stantial performance drops across all metrics (Table 5.3). Soft Recall declines from 91.82 to
80.75, Entity Recall from 38.52 to 36.14, and LLM-as-judge scores decrease significantly (Con-
tent Guidance: 4.16 to 3.36; Logical Coherence: 4.01 to 3.82). These results demonstrate that
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Figure 5.3: AB Preference test between best performing generated outlines among all evaluator
models prefer Apollo, with claude-3-7-sonnet showing strongest preference (79.5% win rate).
Error bars show standard deviation across 5 runs.

Agent 2’s reflection mechanism is crucial for preventing redundant exploration and ensuring
each expansion iteration targets new information gaps. As described in Section 3.3.2, Agent 2
employs memory sets to filter out previously explored query terms, which directly translates
to the higher information diversity (60.81%) and unique URL counts (105.71) shown in Ta-
ble 5.1. Since outlines are generated from the final knowledge graph (Section 3.3.3), this more
comprehensive and diverse knowledge base enables the creation of outlines with better content
coverage and logical structure, as demonstrated by the performance of our method when the
reflective agent is active.

5.3 Article Quality
Having observed that Apollo generates well-structured outlines, we now examine the quality of
the final articles produced by our framework. Building upon the coherent structural outlines,
we evaluate how effectively Apollo transforms the curated knowledge (Section 5.1) into com-
prehensive articles. This evaluation follows a similar methodology to the outline assessment,
employing both automatic metrics that measure lexical similarity to human-written Wikipedia
articles and qualitative LLM-based assessments that examine multiple dimensions of article
quality.

Backbone Method ROUGE ↑ Entity ↑
RecallR1 RL

GPT-4o-mini

oRAG 41.84 14.03 5.92
STORM 42.11 14.44 6.51
OmniThink 41.76 13.94 5.53

APOLLO 52.10† 15.81† 9.17†

w/o Reviewer 49.17 15.51 7.35

Table 5.4: Automatic Evaluation. Results of automatic evaluation against human-written
articles. † denotes significant differences (p < 0.05) from a paired t-test between methods and
the best baseline.

Starting from the automatic metrics, Table 5.4 shows statistically significant improvements
across all measures when comparing Apollo against the baselines. Apollo achieves a ROUGE-1
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score of 52.10, over the best baseline (STORM at 42.11). Similarly, ROUGE-L increases from
14.44 from to 15.81, while Entity Recall shows the most significant gain, improving from 6.51
to 9.17. These improvements suggest that Apollo generates articles with better lexical overlap
with human-written Wikipedia articles.

Backbone Method LLM-as-Judge
Interest Organization Relevance Depth Average

GPT-4o-mini

oRAG 2.34 4.32 3.92 3.88 3.62
STORM 1.61 4.85 4.10 4.54 3.77
OmniThink 1.37 4.28 4.12 4.27 3.51

APOLLO 3.29† 4.92† 4.90† 4.94† 4.51
w/o Filter 1.99 4.74 4.57 4.77 4.02

Table 5.5: LLM-as-a-judge Evaluation. Rubric-based evaluation (1–5 scale) across four
methods. Each row reports average scores across five qualitative dimensions. The LLM-as-judge
used to run these evaluations is M-Prometheus-7B. † denotes significant differences (p < 0.05)
compared to the best baseline.

Table 5.5 presents the qualitative assessment using M-Prometheus-7B across four key di-
mensions. Our framework shows consistent superiority across the evaluated criteria, achieving
an average score of 4.51 compared to 3.77 for the best baseline (STORM). Most notably, Apollo
excels in the Interest dimension (3.29 vs. 2.34 for oRAG), suggesting that the comprehensive
knowledge exploration during the curation phase enables the generation of more engaging and
diverse content. The high scores in Organization (4.92), Relevance (4.90), and Depth (4.94) in-
dicate that Apollo’s knowledge curation and refinement process produces well-organized articles
that stay on topic.

Ablation Analysis : To assess the contribution of our section-specific relevance filtering
mechanism, we conducted an ablation study comparing Apollo against a version without the
relevance filter (w/o Filter). As described in Section 3.3.4, our approach applies an LLM-
based filter Θ to ensure each retrieved snippet provides substantive information for the specific
section being written. Removing this filtering mechanism leads to notable performance degra-
dation across both automatic and qualitative metrics (Tables 5.4–5.5). The most significant
impact appears in Interest scores (3.29 to 1.99), where unfiltered retrieval populates sections
with generic snippets that fail to provide the ”compelling narrative” and ”noteworthy points”
required for high engagement (Score 4; Appendix F). Relevance also suffers (4.90 to 4.57) as
sections incorporate loosely related snippets that do not ”contribute to a comprehensive under-
standing of the topic” (Score 5) for the specific context. Similarly, Depth scores decline (4.94
to 4.77) because irrelevant snippets displace substantive, section-specific information needed
for ”broad coverage” (Score 4). These findings confirm that the filtering step is essential for
producing high-quality articles as demonstrated by the performance of our method when the
filtering mechanism is active.

5.4 Citation Quality
Following up with citation quality, we analyse the percentage of claims that are properly sup-
ported by inline citations (hallucination rate), and the percentage of sections containing at least
one verified claim (coverage). Table 5.6 presents the comparative results across all frameworks.
The results demonstrate positive outcomes with Apollo outperforming the baselines on both
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metrics. Specifically, we achieve a hallucination rate of 5.70% compared to STORM’s 34.34%,
indicating that most claims in Apollo’s generated sections are properly grounded by the snip-
pets cited. Furthermore, analysing coverage, we reach 89.05% compared to STORM’s 60.67%,
demonstrating that nearly all sections written by our framework contain verifiable information
with appropriate citations.

Backbone Method References
Hallucination ↓ Coverage ↑

GPT-4o-mini

oRAG 53.30 44.50
STORM 34.34 60.67
OmniThink 62.29 49.03

APOLLO 5.70† 89.05†

w/o Reviewer 8.63 85.85

Table 5.6: LLM-as-a-judge Evaluation. Results from checking whether the generated text
per each section remains factual (Hallucination) and supports each section of the article (Cov-
erage). † denotes significant differences (p < 0.05) compared to the best baseline.

Figure 5.4: LLM-as-a-judge Evaluation. Results from checking whether the generated
text per each section remains factual (Hallucination) and supports each section of the article
(Coverage). † denotes significant differences (p < 0.05) compared to the best baseline.

Figure 5.4 visualizes the relationship between both metrics across all evaluated methods.
The plot reveals distinct performance across methods: oRAG and OmniThink exhibit higher
hallucination rates (62.29% and 53.30% respectively) while achieving lower coverage. STORM
shows better hallucination control (34.34%) but with reduced coverage (60.67%). In contrast,
our method (upper-left region) shows both low hallucination and high coverage, indicating
that our framework achieves better performance on both dimensions relative to the existing
approaches.

Ablation Analysis : To better understand the contribution of our iterative refinement pro-
cess, we conducted an ablation study comparing Apollo against a version without the reviewer
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component (w/o Reviewer). As described in Section 3.3.4, Agent 4 (Critical Reviewer) eval-
uates the factuality of generated sections by checking whether claims are properly supported
by the cited snippets. When unsupported statements are identified, the reviewer creates struc-
tured feedback in the form of bullet points, specifying which claims lack proper grounding and
providing actionable guidance on how to address these issues. As shown in Table 5.6, this iter-
ative interaction between the reviewer’s feedback and the writer’s revisions yields substantial
improvements in citation quality. The inclusion of the reviewer agent reduces the hallucina-
tion rate by approximately 3 percentage points (from 8.63% to 5.70%) and increases section
coverage by over 3 percentage points (from 85.85% to 89.05%).

5.5 Human Evaluation
To complement our automated evaluations, we conduct human assessments across the outline,
article, citation and overall quality of a topic pages judged by subject matter experts (SMEs).
SMEs are domain specialists with advanced education and professional experience in the sci-
entific fields covered by our evaluation topics. To attain this goal, we randomly select one run
from our five experimental runs and sample 20 topics from our dataset to evaluate articles
generated by Apollo and STORM, the best-performing baseline according to Table 5.5. Each
pair of articles is evaluated by independent SMEs who are presented with both frameworks’
outputs. Prior to evaluation, SMEs complete a demographic questionnaire covering their age,
education level, and familiarity with the given topic. We present these statistics in Table 5.7.
For the evaluation criteria, we ask SMEs to assess articles using the same rubrics employed in
our LLM-as-a-Judge evaluations, as detailed in Tables 5–6.

Characteristic Category Count %

Age

Under 25 0 0.0
25–35 3 15.0
35–45 14 70.0
Above 45 3 15.0

Education Level

Bachelor 0 0.0
Master 17 85.0
PhD 3 15.0
Others 0 0.0

Topic Familiarity
Not familiar 4 20.0
A bit familiar 10 50.0
Very familiar 6 30.0

Total 20 100.0

Table 5.7: Demographics and topic familiarity of Subject Matter Experts (SMEs) who evaluated
the generated articles. Each pair of articles was evaluated by SMEs across 20 concepts, with
evaluators providing demographic information and self-assessed topic familiarity.

Table 5.8 presents the quantitative results from our human evaluation study. The results
demonstrate a strong alignment with our automated LLM-as-judge assessments, providing em-
pirical evidence for RQ3 regarding the correlation between automated and human expert eval-
uations. Apollo achieves superior performance on 8 out of 9 evaluated metrics, with an average
advantage of +0.28 points across all dimensions. The largest improvements appear in Con-
tent Guidance and Coverage (both +0.55), followed by Depth (+0.45) and Global Assessment
(+0.40). Notably, while Apollo demonstrates consistent advantages across most quality dimen-
sions, Storm outperforms in Relevance Focus (+0.25 for Storm), creating an intriguing pattern
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Category Metric Apollo Storm Difference p-value

Outline Quality
Content Guidance 3.85 3.30 +0.55 0.10
Hierarchical Clarity 3.55 3.30 +0.25 0.40
Logical Coherence 3.25 3.15 +0.10 0.40

Article Quality

Interest 3.50 3.30 +0.20 0.40
Coverage 3.90 3.35 +0.55 0.10
Depth 3.85 3.40 +0.45 0.10
Relevance 3.90 4.15 -0.25 0.40
Verifiability 3.85 3.55 +0.30 0.20

Overall Quality Global Assessment 3.90 3.50 +0.40 0.10

Table 5.8: Quantitative evaluation comparing Apollo and Storm across nine quality metrics
organized by evaluation category. Each score represents the mean rating from 20 subject
matter expert evaluations on a 1-5 scale. Bold values indicate the superior method for each
metric. p-values are from two-tailed t-tests comparing score distributions between methods.

that mirrors our automated evaluations. The p-values indicate marginal significance (p =
0.10) for Apollo’s strongest advantages in Content Guidance, Coverage, and Depth, suggesting
meaningful practical differences despite the limited sample size of n=20 concepts.

5.5.1 Qualitative Insights from Expert Feedback
The quantitative scores are substantiated by rich qualitative feedback from our SMEs, which
reveals the underlying reasons for the performance of both methods:

Apollo’s Comprehensive Excellence. SME feedback consistently highlighted Apollo’s su-
perior organization and comprehensive coverage. Evaluators praised Apollo’s structural ad-
vantages: ”A’s sections are better organized and the flow is more natural” and ”A is better
organized, better logical flow and hierarchy. Goes from basics to advanced topics seamlessly”.
This organizational strength directly correlates with the +0.25 advantage in Hierarchical Clarity
observed in Table 5.8. The substantial advantages in Coverage (+0.55) and Depth (+0.45) are
explained by SME observations about Apollo’s comprehensive approach: ”A covers more range
of topics like economic application, environmental etc.” and ”Apollo explored the topic more
extensively with relevant and essential coverage”. Multiple evaluators noted that ”Apollo model
provided explicit information, whereas Storm model was very superficial”, directly supporting
the depth advantage demonstrated in our quantitative results.

Superior Factual Grounding. The +0.30 advantage in Verifiability aligns with consistent
SME praise for Apollo’s citation quality. Evaluators specifically noted: ”All claims are substan-
tiated, unlike Storm model” and ”The citations were appropriate and sufficient”. This feedback
corroborates our automated citation quality analysis (Table 5.6), where Apollo achieved a 5.70%
hallucination rate compared to Storm’s 34.34%.

The Relevance Paradox. The most intriguing finding is Storm’s advantage in Relevance
(-0.25 for Apollo), which initially appears contradictory to Apollo’s comprehensive coverage
strengths. However, SME feedback revealed a fundamental trade-off between information com-
prehensiveness and cognitive digestibility. Evaluators who preferred Storm emphasized concise-
ness: ”less redundancy, more to the point”, ”Storm was more concise”, and crucially, ”Apollo
provides extensive information, which results in an overcrowded page”.
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This apparent contradiction reflects the inherent tension between providing comprehensive
coverage and maintaining focused relevance. Our evaluation rubric defines high relevance as
content where ”every piece of information contributes to a comprehensive understanding of the
topic” (Score 5; Appendix F). However, human evaluators may experience cognitive overload
[5, 88] when presented with Apollo’s extensive information, making them perceive the content
as less focused despite the content actually staying on topic.

Importantly, the same SMEs who noted information overload also acknowledged Apollo’s
superior content quality: ”Even though Apollo article was longer and contained more informa-
tion, it was all quite relevant” and ”It provided interesting background information and provided
a lot of scientific detail”. This suggests that Apollo’s perceived relevance limitation stems from
presentation density rather than off-topic content, supporting the +0.20 advantage in Interest
scores where evaluators appreciated the comprehensive yet engaging coverage.
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Chapter 6

Conclusion

In this work, we have introduced Apollo, a novel iterative graph-based framework designed for
automatic generation of high-quality scientific topic pages. We evaluated each component of
the topic page generation pipeline using the SciWiki-100 dataset, comparing Apollo against
several baseline methods including STORM, OmniThink, and oRAG.

Through extensive experiments addressing RQ1, we explored how different components of
our iterative knowledge curation process and collaborative content generation approach con-
tribute to improvements in automatic metrics and content quality assessments compared to
existing baseline methods. Our novel graph-based approach uniquely leverages knowledge
graphs to systematically extract and organize relevant information from scientific snippets,
subsequently guiding further exploration through collaborative agents. As evidenced by our re-
sults (Table 5.1 and Figure 5.1), using this knowledge graph method allowed Apollo to retrieve
significantly more unique snippets and achieve greater information diversity, indicated by the
broader hull in the semantic embedding space. Furthermore, using the MINE benchmark, we
validated that our knowledge graph construction is competitive with state-of-the-art document-
to-KG approaches, confirming that our framework effectively captures semantic relationships
from scientific content.

Through ablation studies, we showed the critical role of the reflective mechanism in avoiding
redundant queries and maximizing semantic coverage. Building upon these findings, we then
analyzed how effectively these richer knowledge graphs helped in creating outlines. Our results
(Table 5.3) showed clear advantages in outline coherence, logical organization, and semantic
alignment, corroborated through an AB preference test demonstrating consistent superiority of
Apollo generated outlines over the best-performing baseline across multiple LLM evaluators.

For the second part of RQ1, examining article quality, we found through ablation studies
that incorporating a relevance filter was critical. This filter ensures each retrieved snippet
provides sufficient depth for specific sections, significantly enhancing article quality, particu-
larly in metrics such as interest, depth, and relevance. Additionally, automatic evaluations
using ROUGE and entity recall metrics further affirmed that Apollo generated content closely
resembles human-written articles.

In response to RQ2, our evaluations revealed that Apollo’s collaborative agent system sig-
nificantly improves factual grounding and citation quality. Specifically, the critical reviewer
agent substantially reduced hallucination rates and enhanced citation coverage (Table 5.6),
demonstrating its vital role in maintaining verifiable content. The iterative refinement loop,
where generated content undergoes systematic critical feedback is indispensable for reinforcing
factual accuracy. Our ablation analysis further confirmed that removing the critical reviewer
component significantly impacted content reliability, highlighting the necessity of the iterative
critical assessment to uphold high-quality, trustworthy articles.

Finally, addressing RQ3, our human evaluation showed strong alignment with automated
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LLM-based evaluations when both applied the same set of rubrics. Human experts rated Apollo
consistently higher across key metrics such as interest, depth, and factual verifiability, closely
mirroring automated evaluation outcomes (Table 5.8). Although some variations existed due
to inherent subjectivity and sample size constraints, the overall agreement suggests automated
LLM assessments can serve as valid proxies for human evaluation.

6.1 Limitations & Future Research
While this research has shown positive outcome towards the automation of topic pages, our
method could be improved further, namely:

Context Window Saturation & Stopping Criterion Our iterative knowledge expansion
faces scalability limitations due to LLM context window constraints [89]. As the amount of
depth increases the accumulated knowledge graphs and retrieved snippets may exceed available
context windows. In our experiments we are able to synthesize 125 snippets of 512 max tokens
each. While this number is substantially lower compared to the context window of gpt-4o-
mini [90] the generalization to other models with smaller windows may limit its usability.
Additionally, the current exploration of a topic lacks of a intelligent stopping criteria, potentially
leading to unnecessary API calls when sufficient information has already been gathered. Future
research should implement adaptive exploration strategies that balance information discovery
against computational costs. For instance, an extension to our work could be the adaptation
of the generated content tailored to specific audience needs.

Evaluation Methodology & Gold Standard Dataset While our evaluation provides
meaningful insights into Apollo’s performance, several aspects could be strengthened in fu-
ture work. Our human evaluation, conducted on 20 topic pages with subject matter experts,
may require more topic assessments for effectively establishing statistical significance regarding
human-LLM alignment across diverse scientific domains [14]. Additionally, we lack access to
gold standard Wikipedia-like pages with their corresponding source materials. This constraint
necessitated using SciWiki as a proxy for comparing generated content against human-written
articles, potentially introducing evaluation biases [91]. The absence of ground truth source-to-
content mappings makes it difficult to assess optimal knowledge synthesis strategies. Future
work should establish larger-scale evaluation protocols with diverse expert populations and
develop a benchmark dataset that include explicit source-to-content relationships for more rig-
orous assessment.

Multi-modal Content Generation Our framework produces exclusively textual content,
ignoring essential scientific communication elements such as equations, figures, tables, and
diagrams. These are elements that constitute fundamental building blocks on the scientific
understanding. Real scientific articles rely heavily on visual representations, mathematical
formulations, and structured data presentations to convey complex concepts effectively [92].
This limitation significantly constrains practical applicability, as users expect comprehensive
topic pages to integrate multiple content modalities. Future work should investigate multi-
modal content generation capabilities, including automatic figure selection, equation extraction,
and table generation from structured data. For instance, an extension to our work could be
the use of Visual Language Models (VLMs) [93] to automatically select relevant figures and
generate descriptive captions to align with the textual content.
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Appendix

A Topic Pages

Figure 1: Comparison of current topic pages from different providers: ScienceDirect (left) and
Semantic Scholar (right). Both follow a similar layout, displaying the title, definition, related
papers, and related topics.
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B Dataset Details

B.1 Design Choices

Figure 2: Comparing the topic: Postmodernism. Results from Science Direct (SD) (left) and
the corresponding Wikipedia page (right). The current knowledge base at Science Direct treats
Postmodernism from different perspective while its counterpart covers a wide range of categories.
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B.2 Topic Concepts

No. Domain Concept Corpus Size

1 Economics

Division of labour 3816
Economic globalization 2105
Mercantilism 144
Oligopoly 1790
Quantity theory of money 329

2 AgriBio

Carica papaya 29385
Conventional farming 7406
Moringa oleifera 8023
Plant morphology 6523
Rhizosphere 140535

3 ComputerScience

Cyclic redundancy check 2630
Ensemble learning 9476
Linear discriminant analysis 10296
Network time protocol 1596
Trunked radio system 80

4 Immunology Microbiology

Bacterial taxonomy 584
Cestoda 8825
Diagnostic microbiology 856
Germ theory of disease 647
Skin flora 3497

5 Mathematics

Bayesian network 3503
Brahmagupta 184
Discrete wavelet transform 938
Multivariate normal distribution 2026
Quadratic equation 569

6 FoodScience

Breakfast cereal 12365
Food colorant 616
Food-borne disease 50150
Iodized salt 1358
Sourdough bread 3280

7 Neuro

Dopamine hypothesis of schizophrenia 1675
Laudanum 145
Microglia 146
Nanopore sequencing 372
Psychological testing 2090

8 Biochem Genetics MolBio

Allosteric regulation 43584
Genome annotation 10656
Molecular cloning 26835
Somatic cell nuclear transfer 7142
Xyy syndrome 668

Table 1: SciWiki-100 Concepts: Domains 1–8 (Economics–Biochem Genetics MolBio)
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No. Domain Concept Corpus Size

9 Chemistry

Alpha-helix 32939
Azeotropic mixture 8242
Metrology 7433
Second-harmonic generation 18362
Thermal runaway 3680

10 Engineering

Bioplastics 6183
Cellphone 17851
Multi-criteria decision-making 9497
Solar thermal energy 21415
Wireless sensor network 30050

11 Psychology

Agreeableness 16619
Hedonic adaptation 272
Mind wandering 6802
Openness to experience 9378
Reconstructive memory 298

12 SocialSciences

Ecofeminism 290
Feudalism 1474
Group cohesion 2031
Positivism 2102
Posthumanism 352

13 Physics

Cherenkov radiation 3732
Eyepiece 2476
Fractional calculus 5991
Quantum chromodynamics 21966
Topological insulator 11749

14 Nursing HealthProf

Drug dependence 8994
Heart lung machine 386
Lie detection 72
Nuclear magnetic resonance imaging 77588
Tourniquet 6079

15 VeterinaryMedicine

Cushing reflex 171
Epinephrine 12070
Parthenogenesis 766
Progressive systemic sclerosis 35
Xylazine 14026

16 EarthPlanetaryScience

Basalt 133082
Global warming potential 33685
Gobi desert 3158
Species concept 1334
Younger dryas 13756

17 Med Dentistry

Bloodstain pattern analysis 379
Mycobacterium tuberculosis 24239
Ovarian cyst 21686
Prefrontal cortex 21556
Wilcoxon signed ranks test 1706

Table 2: SciWiki-100 Concepts: Domains 9–17 (Chemistry–Med Dentistry)
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No. Domain Concept Corpus Size

18 ChemicalEngineering

Kaolinite 54559
Metal foam 12206
Polysilicon 8951
Sodium bicarbonate 30239
Zeolitic imidazolate framework 67765

19 Pharma Tox

Dimethyl sulfoxide 82582
Ivermectin 18999
Nerium oleander 4858
Phytohormone 35319
Semaglutide 8141

20 MaterialScience

Fatigue of materials 35827
Hydrogen bonding 65127
Photoelectrochemical cell 11712
Pitting corrosion 43214
Prestressed concrete 7423

Table 3: SciWiki-100 Concepts: Domains 18–20

C Terminology

symbol meaning symbol meaning

T topic G∗
m normalized KG at depth m

D domain Vi, Ei vertices and edges of subgraph Gi

CD domain-specific vector collection Qm set of research questions at depth m
si snippet (entry point) qj , ρj question and rationale pair
ci raw text content Lm set of query terms at depth m
ei embedding vector ℓj individual query term
mi metadata (domain, topic, URL) MQ,ML question and query memory sets
Im retrieved information at depth m K curated knowledge base
Gi snippet-level subgraph O article outline
Gm knowledge graph at depth m hi section heading
Φ triplet extraction operator Ri retrieved snippets for section i
η graph normalization function Si filtered snippets for section i

Ψ question generation operator a
(r)
i article section at revision r

Λ query synthesis operator F(r)
i feedback at revision r

Ω outline generation operator MF feedback memory
Γ writer operator A final article
π reviewer operator rmax maximum revision count
Θ relevance filter m maximum expansion depth

(h, r, t) knowledge triplet k top-k retrieval parameter

Table 4: Table of symbols and meanings for the Apollo framework.
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D Pseudo Code

Algorithm 1 APOLLO Framework
1: Input: Topic T , Domain D, Vector collection CD, Max depth m
2: Output: Final topic page article A
3: Phase 1: Knowledge Curation
4: Initialization:
5: I0 ← Retrieve(T, CD) ▷ Initial query retrieval
6: {Gi}si∈I0 ← Φ(I0) ▷ Extract triplets from snippets
7: G0 ←

⋃
i Gi ▷ Aggregate subgraphs

8: G∗
0 ← η(G0) ▷ Normalize knowledge graph

9: Initialize MQ ← ∅, ML ← ∅ ▷ Memory sets
10: Iterative Expansion:
11: for depth j = 0 to m− 1 do
12: Agent 1 - Post-doc Researcher:
13: Qj ← Ψ(G∗

j ,MQ) ▷ Generate research questions
14: MQ ←MQ ∪ {q | (q, ρ) ∈ Qj}
15: Agent 2 - Query Synthesizer:
16: Lj ← Λ(Qj ,ML) ▷ Synthesize query terms
17: ML ←ML ∪ Lj

18: Retrieval and Graph Update:
19: Ij+1 ← Retrieve(Lj , CD) \

⋃j
i=0 Ii

20: {Gi}si∈Ij+1 ← Φ(Ij+1)
21: G∗

j+1 ← η(G∗
j ∪

⋃
si∈Ij+1 Gi)

22: end for
23: K ←

⋃m
j=0 Ij ▷ Curated knowledge base

24: Phase 2: Outline Generation
25: O ← Ω(G∗

m, T ) ▷ Generate hierarchical outline
26: Phase 3: Article Generation
27: for each section hi ∈ O do
28: Ri ← Retrieve(hi,K) ▷ Section-specific retrieval
29: Si ← {s ∈ Ri | Θ(s, hi) = relevant} ▷ Filter relevance
30: Writer-Reviewer Collaboration:
31: a

(0)
i ← Γ(hi,Si) ▷ Initial section draft

32: r ← 0, MF ← ∅
33: repeat
34: Agent 4 - Reviewer:
35: F(r)

i ← π(a(r)
i ,Si,MF ) ▷ Generate feedback

36: MF ←MF ∪ F(r)
i

37: if F(r)
i ̸= ∅ and r < rmax then

38: Agent 3 - Writer:
39: a

(r+1)
i ← Γrevise(a(r)

i ,F(r)
i ,Si) ▷ Revise section

40: r ← r + 1
41: end if
42: until F(r)

i = ∅ or r = rmax
43: end for
44: Article Assembly:
45: A ←

⊕|O|
i=1 a

(r∗
i )

i ▷ Concatenate final sections
46: Return: Complete topic page A
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E Prompts

Knowledge Extraction Agent Prompt

You are a top-tier algorithm designed for extracting information in structured formats to build a knowledge graph
about {topic}.

# Instructions
Adhere to the following steps:

// Question Exploration
0. Based on the snippet provided formulate a set of questions that can expand our knowledge about the topic.

// Entity Extraction
1. Identify all relevant entities to fully understand the provided snippet. For each identified entity, extract the

following information:
- entity_name: Full name of the entity. An entity in a knowledge graph is a node that represents a real-world object

, concept, or abstract idea, which can be uniquely identified.
- entity_description: short description of the entity and why is important to analyze it in this context to

understand the snippet.

// Relationship Extraction
2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly

related* to each other.
For each pair of related entities, extract the following information:
- source_node_id: the node_id of the source entity, as identified in step 1
- target_node_id: the node_id of the target entity, as identified in step 1
- relationship_type: a short description (lower-case with underscores & between 1-4 words) why the two entities

related to each other.
- relationship_description: explanation as to why you think the source entity and the target entity are related to

each other
- To construct the entity related pairs use the description that we found in step 1.

// Key Words
3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These

should capture the overarching ideas present in the document.

// Consideration:
- Do not invent entities or relations not directly stated.

# Output:
- Do not return any additional information other than the JSON format below:
{
"nodes": [
{
"id": "entity_name",
"label": "Human readable name",
"description": "entity_description"

},
{
"id": "project_apollo",
"label": "Project Apollo",
"description": "entity_description"

},
{
"id": "nasa",
"label": "NASA",
"description": "entity_description"

},
...

],

"edges": [
{
"from": "source_node_id",
"to": "target_node_id",
"relationship": "relationship_type",
"relationship_description": "relationship_description"

},
{
"from": "project_apollo",
"to": "nasa",
"relationship": "lead_by",
"relationship_description": "relationship_description"

},
...

]
}
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Agent 1: Post-doc Researcher Prompt

You are a helpful assistant working for a research team on expanding the provided knowledge graph.
Your task is to come up with queries to deepen (depth) and expand (breadth) our understanding of the topic: {topic}.

Instructions:
1. Analyze the knowledge graph carefully to identify gaps in our understanding
2. Look for areas that are under-explored or completely missing
3. Consider aspects that would provide new perspectives not currently represented

Considerations:
- IMPORTANT: The knowledge graph represents our accumulated knowledge so far - focus on what’s MISSING, not what’s

already there
- Examine both nodes and relationships to find areas needing exploration
- Consider formulating queries that explore:
- General queries: Areas entirely absent from the graph that could broaden understanding
- In-depth queries: Existing areas that need deeper investigation

- Analyze which of these two types (general vs in-depth) would be more valuable at this stage
- For each query, provide one sentence explaining why this information would specifically fill a gap in the current

knowledge graph

Constraints:
- Do NOT repeat any of the questions below as we have already explored them:
{questions_seen}

Output:
Adhere to the following format and do not output anything else:
{
"general_queries": [
{
"query1": "General Query 1",
"explanation1": "This addresses [specific gap] not currently represented in the graph"

},
...

],
"in_depth_queries": [
{
"query1": "In-depth Query 1",
"explanation1": "This expands on [specific node/relationship] which is currently superficial"

},
...

]
}

Agent 2: Reflective Query Synthesiser Prompt

You are an expert researcher on the topic: {topic}. Your task is to transform the provided questions
into effective search queries to expand our breath and depth of the topic treated.

Instructions:
- Think from the perspective of {audience}.
- Convert the ‘general_queries‘ and ‘in_depth_queries‘ into precise search terms for a search engine
- Create search queries that will provide the most valuable NEW information
- Focus on generating DIVERSE queries that cover different aspects of the topic
- Format each query as concise keywords (2-5 words) suitable for a search engine
- Rank the queries by importance, with the most critical knowledge gaps first

Constraints:
- Do not add include the ’{topic}‘ in your search queries.
- Create search queries that MUST NOT repeat or paraphrase any query from the ‘queries_seen‘ provided below.
- Avoid any two queries that share more than one keyword in common.
- Avoid creating queries that are likely to retrieve the same information.
- CRITICAL: Do NOT generate queries similar to any of the queries below:
{queries_seen}

Output:
- Adhere to the following format and do not add any other text:
{

"combined_queries": [
"query_1",
"query_2",
...
"query_N"

]
}
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Outline Construction Agent Prompt

Based on this knowledge graph construct an outline for a Wikipedia Article that covers all the nodes and edges in
the graph. The outline should be structured with headings and subheadings, and should build a comprehensive
overview of the topic.

Here is the format of your writing:
1. Use "#" Title" to indicate section title, "##" Title" to indicate subsection title, "###" Title" to indicate

subsubsection title, and so on.
2. Do not include other information.
3. Do not include topic name itself in the outline.

Section-Specific Relevance Filter Prompt

You are a thorough Wikipedia reviewer that needs to check whether the provided snippet is relevant to explain the
section provided about the topic.

The snippet must meet BOTH criteria:
1. Be relevant to the section theme
2. Actually mention or discuss the main topic

Example 1:
- Topic: "Neural Networks"
- Section: "Backpropagation"
- Snippet: "Backpropagation is an algorithm used to train neural networks by adjusting weights based on the error

gradient."
- Answer: "yes"

Example 2:
- Topic: "Neural Networks"
- Section: "Backpropagation"
- Snippet: "Neural networks are computational models inspired by the human brain."
- Answer: "no" (this is about neural networks generally, not specifically about backpropagation)

Output:
- Reply ONLY with ’yes’ or ’no’ to indicate whether the snippet is relevant to the section. Do not provide any other

information or explanation.
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Agent 3: Factual Writer Prompt

You are an expert Wikipedia writer tasked with creating FACTUAL, clear, and thoroughly cited sections based on
provided reference materials.

# CORE GUIDELINES

## 1. Reference Selection and Analysis
- Thoroughly analyze all provided ‘Ref: [digit]‘ snippets before writing.
- Map each snippet to relevant parts of the outline section.
- Identify overlapping information across multiple references to strengthen claims.
- Never write anything that cannot be directly supported by the provided references.

## 2. Citation Requirements
CRITICAL: Every factual statement MUST have a citation.

### Mandatory Citation Rules:
- EVERY sentence containing factual information must end with a citation [1] or multiple citations [1][2].
- ALL opening sentences of sections and subsections MUST have citations.
- ALL definitional statements (using "is", "are", "refers to", "encompasses", ...) MUST be cited.
- ALL claims about effectiveness (using "enhances", "improves", "reduces", ...) MUST be cited.
- Descriptive or analytical statements must be cited if they interpret or synthesize information.
- Only pure transitional phrases like "This section discusses..." may omit citations.
- When in doubt, cite - over-citation is preferable to under-citation.
- NEVER end mid-sentence - ensure all sentences are complete with proper punctuation and citations.

### Citation Placement:
- Place citations immediately after the claim they support.
- For compound sentences, place citations after each distinct claim.
Example: "The process involves three steps [1], which were first documented in 2020 [2]."

## 3. Content Requirements

### Neutrality and Accuracy:
- Maintain Wikipedia’s neutral point of view (NPOV).
- Present facts without bias or opinion.
- Use precise, encyclopedic language.
- AVOID weasel words or unsupported generalizations.

### Comprehensiveness:
- Include all relevant information from provided references.
- Synthesize information when multiple sources discuss the same topic.
- Ensure logical flow between paragraphs.

## 4. Specific Constraints

### DO NOT:
- Include information not present in the provided references.
- Make logical leaps or assumptions beyond the source material.
- Use author names from the references (use citation numbers instead).
- Create a separate references section.
- Leave any factual claim without a citation.

### DO:
- Start with "# section name" for the main section.
- Use "## subsection name" and "### sub-subsection name" as needed.
- Cite every piece of information that comes from a reference.
- Use multiple citations [1][2][3] when a claim is supported by multiple sources.
- Write in clear, accessible language while maintaining accuracy.
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Factual Editor Prompt

You are a Wikipedia editor fixing a specific section based on reviewer feedback. Your primary goal is to ensure
every claim is factually accurate and properly supported by the provided references.

Your Task:
- Fix ONLY the issues mentioned in the feedback
- Ensure all claims are supported by the cited references
- Maintain the overall structure and flow of the section
- If you cannot cite it verbatim in the given reference, DELETE the statement. Do not paraphrase or hedge.

Editing Guidelines:
1. Addressing Feedback:

- For each feedback item, locate the mentioned claim in the section
- Fix the issue by either:
a) Correcting the citation to match a supporting reference
b) Rewriting the claim to accurately reflect what’s in the references
c) IMPORTANT: DELETE the claim ONLY if no reference supports it

2. Citation Rules:
- Use only citation numbers like [1], [2], etc.
- Only cite references that actually support the claim
- Every factual claim must have a citation

3. Preserving Content:
- Keep all correctly cited content unchanged
- Maintain the section’s structure (headings, paragraph breaks)
- Preserve writing style and tone
- Only modify sentences explicitly mentioned in feedback

4. When References Don’t Support a Claim:
- First try to rewrite the claim to match what the references actually say
- Only remove the claim if no reference supports any version of it
- If removing, ensure the text still flows naturally

5. CRITICAL: Only make claims that are DIRECTLY stated in the references.

Output: The revised section with only the necessary changes made.

Agent 4: Critical Reviewer Prompt

You are a strict Wikipedia fact-checker collaborating with an editor. Your job is to review this specific section
and ensure that every atomic claim (i.e., each coherent statement or set of sentences followed by a citation)
is properly supported by the cited reference.

Review Mode:
- If ‘previous_feedback‘ is empty:
- Perform a complete review of all atomic claims in this section.

- If ‘previous_feedback‘ is NOT empty:
- ONLY review the issues listed in ‘previous_feedback‘ for this section.
- Do NOT re-raise the same issue if it was addressed by removal
- IMPORTANT:
a) First check if the quoted text from each feedback item still exists in the current section content. If the

exact quoted text cannot be found, that issue is resolved (the claim was likely rewritten or removed).
b) Citation numbers in ‘previous_feedback‘ may no longer be valid. Focus on the quoted text content, not citation

numbers. If the quoted text no longer exists in the current content, that issue is resolved.
c) If a problematic sentence was deleted entirely, consider that issue RESOLVED

Review Process:
1. Read through the section content, identifying each atomic claim.
2. For each atomic claim with a citation [X]:
- Check if Ref: [X] in the provided references fully supports the claim.
- Accept semantic equivalence (e.g., "distributed in" = "found in")
- If supported, no feedback is needed.
- If not supported, specify exactly what is unsupported.

3. For each atomic claim without a citation:
- Determine if it contains a factual claim that requires a citation.
- If so, specify which Ref: [digit] should be added.

Approval Criteria:
- Verdict is "approved" if every atomic claim is correctly cited or does not require a citation.
- If any atomic claim is not properly supported, verdict is "needs revision".

Output Format:
- Verdict: "approved" or "needs revision"
- Feedback: List of specific issues to fix
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F Rubric Grading
Here, we provide the detailed rubric grading criteria described in Section 4, for the Article and
Outline evaluation by M-Prometheus-7B.

F.1 Outline Evaluation

Content Generation Guidance: Does the outline effectively guide content generation?

Score 1 The outline fails to guide content generation, omitting significant aspects of the topic or providing
insufficient direction.

Score 2 The outline provides limited guidance, covering some key areas but lacking depth or completeness in
addressing the topic.

Score 3 The outline provides moderate guidance for content generation, addressing most key areas but leaving
some gaps or ambiguities.

Score 4 The outline effectively guides content generation, covering all significant aspects with clear direction,
though minor refinements could enhance comprehensiveness.

Score 5 The outline is exemplary in guiding content generation, thoroughly addressing all aspects of the topic
with clear, detailed direction and no significant gaps.

Hierarchical Clarity: Does the outline clearly define a hierarchy of topics and subtopics?

Score 1 The outline exhibits no discernible hierarchical structure. Topics and subtopics are jumbled together
without logical separation or clear levels.

Score 2 The outline attempts to establish a hierarchy but fails to maintain logical consistency. Main topics
and subtopics are frequently misclassified, and the structure is overly rigid or disjointed.

Score 3 The outline has a recognizable hierarchical structure but lacks diversity in organization style. While
main topics are somewhat clear, subtopics occasionally overlap or are misaligned.

Score 4 The outline displays a clear, logical, and diverse hierarchical structure. Main topics are distinct, and
subtopics are properly nested. While most elements are well-placed, there may be minor redundan-
cies.

Score 5 The outline showcases an exceptional, flawless hierarchical structure. Each main topic is distinct,
and subtopics are logically nested with absolute clarity and stylistic diversity.

Logical Coherence: Does the outline logically organize topics ensuring smooth flow of ideas?

Score 1 The outline is highly disjointed and incoherent. Topics and subtopics appear in a random, unordered
manner, with no logical flow or sense of progression.

Score 2 The outline shows some attempt at logical organization, but it contains frequent inconsistencies,
abrupt shifts, or logical missteps. Topics and subtopics are misaligned or lack proper transitions.

Score 3 The outline demonstrates a basic level of logical coherence. Most topics follow a general sequence,
but some sections feel forced, with weak or unclear transitions.

Score 4 The outline exhibits a strong sense of logical flow, with ideas presented in a mostly smooth and
connected manner. Transitions between topics and subtopics are clear, but a few minor adjustments
could make the flow more seamless.

Score 5 The outline achieves exceptional logical coherence. Each topic and subtopic follows a deliberate,
thoughtful progression, with clear, natural, and intuitive transitions.

Table 5: Scoring rubrics on a 1–5 scale for outline quality evaluation by M-Prometheus-7B.
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F.2 Article Evaluation

Interest Level: How engaging and thought-provoking is the article?

Score 1 Not engaging at all; no attempt to capture the reader’s attention.
Score 2 Fairly engaging with a basic narrative but lacking depth.
Score 3 Moderately engaging with several interesting points.
Score 4 Quite engaging with a well-structured narrative and noteworthy points that frequently capture and

retain attention.
Score 5 Exceptionally engaging throughout, with a compelling narrative that consistently stimulates interest.

Coherence and Organization: Is the article well-organized and logically structured?

Score 1 Disorganized; lacks logical structure and coherence.
Score 2 Fairly organized; a basic structure is present but not consistently followed.
Score 3 Organized; a clear structure is mostly followed with some lapses in coherence.
Score 4 Good organization; a clear structure with minor lapses in coherence.
Score 5 Excellently organized; the article is logically structured with seamless transitions and a clear argu-

ment.

Relevance and Focus: Does the article stay on topic and maintain a clear focus?

Score 1 Off-topic; the content does not align with the headline or core subject.
Score 2 Somewhat on topic but with several digressions; the core subject is evident but not consistently

adhered to.
Score 3 Generally on topic, despite a few unrelated details.
Score 4 Mostly on topic and focused; the narrative has a consistent relevance to the core subject with

infrequent digressions.
Score 5 Exceptionally focused and entirely on topic; the article is tightly centered on the subject, with every

piece of information contributing to a comprehensive understanding of the topic.

Depth of Exploration: How thoroughly does the report explore the initial topic and its related areas?

Score 1 Very superficial; provides only a basic overview with significant gaps in exploration.
Score 2 Superficial; offers some detail but leaves many important aspects unexplored.
Score 3 Moderate depth; covers key aspects but may lack detailed exploration in some areas.
Score 4 Good depth; explores most aspects in detail with minor gaps.
Score 5 Excellent depth; thoroughly explores all relevant aspects with comprehensive detail, reflecting a deep

and dynamic discourse.

Table 6: Scoring rubrics on a 1–5 scale for article quality evaluation by M-Prometheus-7B.
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G Human Evaluation Details

Figure 3: Human Evaluation Interface: Overview of the three-panel layout used for as-
sessing generated topic pages (Part 1). The interface displays a topic from a specific domain
with the structured outline (left), generated article content with inline citations (center), and
qualitative evaluation metrics (right) using the rubric scores detailed in Appendix F.
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Figure 4: Human Evaluation Interface: Overview of the three-panel layout used for as-
sessing generated topic pages (Part 2). This page has been cropped; the actual topic page
continues, showing a list of references at the bottom of the page similar to a Wikipedia style
article. Consistent with our factuality evaluation metric (Section 4.6), each in-line citation is
clickable, allowing human evaluators to access and review the actual snippet content that was
used to support each referenced claim in the topic page.
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