

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supercharging Synthetic Data Generation
for Information Retrieval Systems

Matey Krastev∗
University of Amsterdam

Amsterdam, the Netherlands

Miklos Hamar∗
University of Amsterdam

Amsterdam, the Netherlands

Danilo Toapanta∗
University of Amsterdam

Amsterdam, the Netherlands

Jesse Brouwers∗
University of Amsterdam

Amsterdam, the Netherlands

Abstract
We examine the practical bene�ts of synthetic data generation for
information retrieval by reproducing and extending the code and
experiments of InPars Toolkit [Abonizio et al. 2023]. We validate
the paper’s claims by reproducing a subset of its experiments on
synthetic query generation and model �ne-tuning, focusing on
InPars-V1, InPars-V2, and, in part, Promptagator. Furthermore, we
expand the toolkit by incorporating Contrastive Preference Opti-
mization (CPO) for query generation and integrate dynamic prompt
optimization. Our �ndings con�rm the reproducibility of InPars
Toolkit’s pipelines and demonstrate its plug-and-play functionality.
Our enhancements demonstrate both signi�cant e�ciency and per-
formance gains, as well as promising directions of further research.
We release the code at: https://github.com/danilotpnta/IR2-project

Keywords
Synthetic Data Generation, LLM’s, Reranking, CPO, Information
Retrieval

ACM Reference Format:
Matey Krastev, Miklos Hamar, Danilo Toapanta, and Jesse Brouwers. 2025.
Supercharging Synthetic Data Generation for Information Retrieval Systems.
In . ACM, New York, NY, USA, 9 pages.

1 Introduction
The training of Neural Information Retrieval (NIR) models requires
a substantial amount of annotated data. Typically, a dataset is a
collection of documents, paired with queries and human-labelled
relevance judgments that connect the two. These relevance judge-
ments, however, are hard and costly to acquire. For example, a
human annotator typically requires at least one minute on average
to assess the relevance of a query-document pair [Boytsov et al.
2023].

To address this challenge, prior research has explored leveraging
multi-billion-parameter Large Language Models (LLMs) to gener-
ate relevant queries synthetically. Notable examples include InPars
[Bonifacio et al. 2022], its extensions InPars-V2 [Jeronymo et al.
2023] and InPars-light [Boytsov et al. 2023], as well as Prompta-
gator [Dai et al. 2022]. These approaches are commonly referred
to as QGen pipelines[Chaudhary et al. 2023], where a document

Conference’17, July 2017, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

(re-)ranking model, such as MonoT5 [Nogueira et al. 2020], is �ne-
tuned using the synthetic data to improve downstream retrieval
performance. These pipelines show promising results, which moti-
vate further experimentation in this direction.

While these methods o�er researchers �exible pipelines for en-
hancing Neural Information Retrieval (NIR) models in data-scarce
scenarios, reproducing and utilising the aforementioned QGen
pipelines remains a challenging task. To address this issue, Abonizio
et al. introduced InPars Toolkit [Abonizio et al. 2023], an open-
source end-to-end pipeline for synthetic data generation with GPU
support. The toolkit enables researchers and practitioners to e�-
ciently experiment with and implement IR pipelines, signi�cantly
reducing the initial implementation complexity.

In the �rst part of this study, we aim to reproduce their results.
Speci�cally, we aim to validate the following claims:

(1) InPars Toolkit is an end-to-end reproducible pipeline for
synthetic data generation.

(2) It provides a comprehensive guideline for reproducing in
full InPars-V1 [Bonifacio et al. 2022], InPars-V2 [Jeronymo
et al. 2023], as well as in part Promptagator [Dai et al. 2022].

(3) The toolkit has plug-and-play functionality, allowing for
seamless integration of alternative LLMs.

In doing so, we aim to validate the transparency and reliability
of adopting and extending the InPars Toolkit for future research.

Secondly, a common key insight from these studies is that the
synthetically generated data need certain �ltering mechanisms
to ensure high-quality training data for the downstream model.
In our study, we found that this �ltering step is computationally
expensive and can result in a signi�cant amount of generated data
being discarded [Bonifacio et al. 2022; Dai et al. 2022].

To address this, we propose two main extensions to the InPars
Toolkit: (1) �ne-tuning the generator model using Contrastive Pref-
erence Optimization (CPO) [Xu et al. 2024] to improve the quality of
generated queries, and (2) employing dynamic prompt optimization
using DSPy [Khattab et al. 2024] to enhance the prompt templates
used in the data generation process.

By �ne-tuning the generator model with CPO, we aim to reduce
the noise in the generated queries, thereby increasing the propor-
tion of high-quality queries and minimizing the need for extensive
�ltering. This approach leverages a preference-based optimization
technique to guide the generator model towards producing more
relevant and useful queries.

Additionally, by integrating DSPy for dynamic prompt optimiza-
tion, we aim to replace the static prompt templates currently used

1

https://github.com/danilotpnta/IR2-project

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Matey Krastev, Miklos Hamar, Danilo Toapanta, and Jesse Brouwers

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

in the InPars Toolkit with more adaptive and contextually appro-
priate prompts. This method utilizes the LLM’s own capabilities to
determine what constitutes a relevant query, potentially improving
the overall quality of the generated data and further reducing the
reliance on �ltering.

Our contributions can be summarised as follows:

• We validate the main claims of [Abonizio et al. 2023] and
the InPars Toolkit.

• We use a Llama3.1-8B model to generate synthetic data for
Scifact, and �netune MonoT5-3B reranker models on the
generated sets of synthetic data.

• We extend the InPars Toolkit with a query generator �ne-
tuning stage, where we �netune an LLM on a subset of
MS-Marco [Bajaj et al. 2016] using a CPO training scheme
[Xu et al. 2024].

• We explore the application of DSPy in the synthetic data
generation pipeline, aiming to improve upon the currently
used static prompt templates.

• We make the synthetic data and models generated in this
study publicly available at: huggingface.co/inpars-plus.

2 Background and Preliminaries
In this section, we summarise the key concepts behind the QGen
pipelines and the methods used in the InPars Toolkit. We also
brie�y introduce the main contributions of the InPars Toolkit and
highlight the key limitations that motivate this work. Finally, we
give a summary of the relevant literature we used in our extensions.

2.1 QGen Pipelines
All synthetic query generation (QGen) pipelines considered in this
work, as well as in [Abonizio et al. 2023], have a similar structure.
First, a generator LLM is presented with a prompt containing a
target document and a set of relevant query-document pairs. The
generator LLM is then invoked to generate a relevant query for
this document. This process is repeated for each document in the
dataset. The generated queries are subsequently �ltered based on a
scoring mechanism, and the high-quality queries are used to �ne-
tune a reranker model. At the end of the pipeline, the �ne-tuned
reranker model is evaluated on some test data and various retrieval
metrics are reported.

Depending on which LLMs are used for query generation, which
prompting strategies are employed as well as the �ltering mech-
anism, the InPars Toolkit [Abonizio et al. 2023] considers the fol-
lowing three QGen pipelines: InPars-V1 [Bonifacio et al. 2022],
InPars-V2[Jeronymo et al. 2023], and Promptagator[Dai et al. 2022].

2.2 InPars
The initial InPars paper, later referred to as InPars-V1, proposed
by Bonifacio et al. 2022, introduced an e�ective method for lever-
aging large LLMs in retrieval by utilizing them as generators of
synthetic data. The authors identi�ed that using LLMs directly dur-
ing the retrieval stage is infeasible; thus, they proposed shifting
the computational cost to the synthetic data generation process for
training.

The InPars method creates a prompt by concatenating a static
pre�x C with a document from the target domain 3 . InPars con-
siders two di�erent (�xed) prompt templates: a vanilla template
and a guided by bad question (GBQ) template. The vanilla template
consists of a �xed set of 3 pairs of queries and their relevant doc-
uments, sampled from the MS MARCO [Bajaj et al. 2016] dataset.
The GBQ prompt extends this format by posing the original query
to be a bad question, in contrast with a good question manually
constructed by the authors. Feeding this pre�x-target document
pair C | |@ to the LLM is then expected to output a novel query @⇤
likely to be relevant to the target document. Thousands of these
positive examples are generated for the target domain, and are later
used to �ne-tune a monoT5 reranker model [Nogueira et al. 2020].

However, the authors identi�ed that using this full set of genera-
tions for training does not yield optimal results. This is likely owed
to the poor quality of a large portion of the generated examples.
Therefore, the authors propose to apply a scoring mechanism to
select the top of generations based on the following score:

?@ =
1
|@ |

|@ |’
8=1

log? (@8 |C,3,@<8) (1)

where ? (@8 |C,3,@<8) represents the probability of generating
token 8 from generated query @ assigned by the generator LLM,
GPT-3 in the case of InPars.

As a folloup work, InPars-v2 [Jeronymo et al. 2023] extends the
original InPars by replacing the scoring metric with a relevance
score provided by a monoT5-3B reranker model. Additionally, the
authors switch the generator LLM to GPT-J [B. Wang and Komat-
suzaki 2021].

In both works, the authors prompt the generator model 100 000
times for synthetic queries but only keep the top 10 000 highest
scoring instances. This means that 90% of the generated queries are
discarded. It should be noted that the authors provide no substanti-
ation or ablation for this setting.

2.3 Promptagator
The Promptagator method, proposed by Dai et al. 2022, operates
similarly to the InPars method. Promptagator prompts the 137B-
parameter model FLAN [Wei, Bosma, et al. 2021] with eight query-
document examples, followed by a target document, to generate a
relevant query for the target document. Unlike InPars, which uses
a �xed prompt template, Promptagator employs a dataset-speci�c
prompt template tailored to the target dataset’s retrieval task.

Subsequently, high-quality generations are �ltered from the
batch of outputs using a process called consistency �ltering [Alberti
et al. 2019; Lewis et al. 2021]. Consistency �ltering ensures that a
query is answered by the passage from which it was generated. To
this end, a retrieval model is invoked and the generated query is
only accepted if the target document appears in the top-K retrieved
documents.

Abonizio et al. (2023) highlight several limitations in these works.
Firstly, neither InPars nor Promptagator are fully reproducible,
partly due to the use of models that are not publicly available. Ad-
ditionally, the InPars models are restricted to speci�c hardware
(TPUs), making them di�cult to adapt to other models. Lastly, the
Promptagator method lacks a public code base entirely. To address

2

https://huggingface.co/inpars-plus

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supercharging Synthetic Data Generation for Information Retrieval Systems Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

these limitations, Abonizio et al. introduce the InPars Toolkit, an
open-source end-to-end and fully reproducible pipeline for syn-
thetic data generation with GPU support (via PyTorch [Paszke et al.
2019]).

2.4 Contrastive Preference optimization
To address the performance gap between moderate-sized LLMs
(7–13 billion parameters) and state-of-the-art large LLMs, such as
GPT-4 [OpenAI 2023], in the task of machine translation, Xu et
al. proposed Contrastive Preference optimization (CPO) [Xu et al.
2024].

The goal of CPO is to overcome two key shortcomings of super-
vised �ne-tuning. First, the performance of supervised �ne-tuning
is limited by the quality of gold-standard human-annotated ref-
erence translations. Second, supervised �ne-tuning cannot reject
errors present in the provided gold-standard translations.

CPO addresses these limitations by introducing a training schema
that utilises triplets comprising reference translations, translations
from a teacher model (e.g., GPT-4), and those from the student
model. Reference-free evaluation models are employed to score the
translations, and these scores are subsequently used to guide the
student model toward generating preferred translations.

In practice, contrastive preference optimization forms an approx-
imation of Direct Policy Optimization by instead minimizing its
upper bound.

Given a set of source sentences X, alongside preferred targets
YF and less preferred ones Y; , we can construct a triplet dataset of
input, preferred output, and dispreferred output, which we denote
as D = {G (8) ,~ (8)F ,~ (8)

;
}#8=1. Then, the preference optimization loss

term is de�ned as:

!(c\ ;*) = �E(G,~F ,~;)⇠D [logf (V logc\ (~F |G)
� V logc\ (~; |G))]

where U is a uniform prior policy which replaces cref in clas-
sical DPO. This relaxation allows for only storing and requiring
computations for the target policy model – e�ectively reducing
computational and memory requirements in half. More importantly,
because the preferred and dispreferred targets are determined by
an objective (reference-free) metric, they are potentially able to
approximate better the optimal policy c⇤. In the context of machine
translation, this trains the model to avoid generating adequate but
imperfect outputs.

Furthermore, the authors [Xu et al. 2024] incorporate a behaviour-
cloning (BC) regularizer such that the distribution of the target
model’s generations does not deviate too far from the distribution
of the teacher model’s generations, which is de�ned as:

L#!! = E(G,~F)⇠⇡ [logc\ (~F |G)]

Thus, the �nal CPO objective is de�ned as:

min
\
!(c\ ,*)| {z }
Lprefer

�E(G,~F)⇠⇡ [logc\ (~F |G)]| {z }
LNLL

2.5 DSPy
The rise of promptable LLMs has inevitably led the research commu-
nity to explore techniques for e�ectively prompting these models.
Consequently, LLM pipelines often rely on hard-coded prompt tem-
plates, of which the InPars Toolkit is an example. To address this
limitation, Khattab et al. introduced DSPy [Khattab et al. 2024],
a programming model that o�ers a more systematic approach to
optimizing LLM pipelines. DSPy brings the construction and opti-
mization of LLM pipelines closer to traditional programming, where
a compiler automatically constructs prompts and invocation strate-
gies by optimizing the weights of general-purpose layers following
a program.

2.6 Research Gap
In light of the previously discussed studies, it becomes apparent
that synthetic data generation pipelines, such as InPars and Promp-
tagator, have proven to be e�ective strategies for improving Neural
Information Retrieval models. Previous studies have focused on
enhancing di�erent components of these pipelines. For instance,
InPars-V2 has improved the scoring mechanism used for synthetic
data �ltering, InPars-light has enhanced overall e�ciency by exclu-
sively using more lightweight, open-source models, and InRanker
has addressed the reranking bottleneck by distilling knowledge
from a large MonoT5-3B model specialized in the ranking task into
smaller counterparts while utilizing synthetic data from InPars.

However, to the best of our knowledge, no work has addressed
the issue of reducing noise in the generated queries. In the case of
InPars, 90% of the generated queries are �ltered out and not used in
subsequent stages of the pipeline. Since query generation comprises
one of the most computationally expensive stages, this study aims
to mitigate this ine�ciency. We explore replacing the static prompt
templates used in the InPars Toolkit pipeline with DSPy prompt
optimization, with the aim of improving the query generation pro-
cess. Additionally, we investigate applying a knowledge distillation
strategy, somewhat similar to InRanker, to the generator LLM using
a CPO �ne-tuning procedure.

3 Methodology
In this section, we begin by discussing our approach to ensuring
reproducibility of the claims of the original authors, then we outline
our methodology for extending the work of the original authors.

3.1 Reproducibility
As speci�ed in Section 1, we start by assessing the reproducibility
of InPars Toolkit. To this end, we aim to verify the validity of the
three main claims we have identi�ed: (1) the InPars Toolkit is an
end-to-end reproducible pipeline; (2) it provides a comprehensive
guide for reproducing InPars-V1, InPars-V2, and partially Promp-
tagator; and (3) the toolkit has plug-and-play functionality. Given
the substantial computational resources required to fully reproduce
all experiments on the 18 BEIR benchmark datasets as proposed
by Abonizio et al.[Abonizio et al. 2023]—approximately 2000 GPU
hours—we opted for a more e�cient approach. Fortunately, the
authors have made a signi�cant portion of the synthetic data and

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Matey Krastev, Miklos Hamar, Danilo Toapanta, and Jesse Brouwers

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

�ne-tuned models publicly available1. To reduce the energy foot-
print of this reproducibility study, we propose conducting three
di�erent types of reproduction experiments on the smallest dataset
in the BEIR benchmark—SciFact [Wadden et al. 2020].

Figure 1: Diagram of the three di�erent reproducibility ex-
periments.

Our �rst experiment will be a full end-to-end reproduction of the
InPars Toolkit methodology for reproducing InPars-V1, InPars-V2,
and partially Promptagator, thereby assessing the validity of Claims
1 and 2. Secondly, we skip the expensive data generation stage by
downloading the synthetic data made publicly available by the au-
thors. By doing so, we assess the validity of the published resources
while providing additional evidence of the InPars Toolkit’s repro-
ducibility. Finally, we will utilise the pre-trained ranker models
published by the authors for reranking.

A minor issue with the published resources is that not all of them
were found, despite the authors claiming to have published them.
Speci�cally, we were unable to locate the synthetic data generated
using the Promptagator prompt templates speci�ed in the InPars
Toolkit, nor did we �nd the pre-trained reranker models trained on
InPars-v1 generations. Consequently, these experiments were not
conducted.

To assess the validity of claim 3, regarding plug-and-play func-
tionality, we additionally perform a full end-to-end run of the QGen
pipeline using a newer LLM, namely Llama 3.1 [Gratta�ori et al.
2024] for query generation. Since the original authors experiment
with the GPT-J-6B model, we attempt to match this with the 8B pa-
rameters version of LLama 3.1. We expect this model to seamlessly
integrate into the InPars Toolkit pipeline and potentially improve
downstream performance.

To further reduce the computational workload, all experiments
are run using half precision (FP16). Furthermore, we use the default
parameters speci�ed by the authors in the reproducibility guide
and the published code.

3.2 Extending InPars-toolkit
3.2.1 Fine-tuning the Generator. We hypothesize that targetting
the generator model for �ne-tuning individually will result in bet-
ter retrieval performance, and will alleviate the issue of wasted
compute. Furthermore, given high enough quality, we may even
omit �ltering altogether.

1InPars on HuggingFace
InPars �ne-tuned monoT5 models
Listed resource on the GitHub repository

Since our main goal is to reduce the total cost of the QGen
pipeline, we experiment with CPO to obtain a model that gener-
alizes to the task of query generation across di�erent target do-
mains. This approach aims to minimize wasteful computation and
hopefully eliminates the need to re-train the model for each target
dataset.

Following Xu et al. 2024, we adapt the triplet data generation
pipeline by proposing the following modi�cations for synthetic
query generation (also pictured in Fig. 2).

(1) Sample N pairs of relevant query-document pairs, prefer-
ably with all available documents in the corpus.

(2) Using two models – one teacher and one student, generate
predicted queries for each document. Here we also employ
targeted prompt templates, as described in §3.2.2.

(3) Compute a relevance score between the three queries (one
from student, one from teacher, and one as the reference)
and document, as described in §3.2.3.

(4) Filter out irrelevant data samples for which all scores lie
within preset margins ! < B8B/C/A < � . This aims to reduce
degenerate cases where the model outputs copies of the
document or irrelevant queries. We use ! = 0.3 and� = 0.7.

(5) Select the query corresponding to the highest relevant score
as the “preferred” example to optimize for, and the query
corresponding to the lowest score as the “dispreferred” ex-
ample.

(6) Train using CPO, following Xu et al [Xu et al. 2024].

The trained generator model can then be used in zero-shot fash-
ion in order to produce higher quality queries, enhancing down-
stream performance.

For our study, we employ Llama 3.1 8B Instruct2, as well as
Llama 3.1 Nemotron 70B Instruct3 [Gratta�ori et al. 2024] for our
student and teacher models, respectively. We hypothesize that the
knowledge distillation e�ect of preference-based optimization will
be strongest on models of similar architecture. We �ne-tune a single
student model on 100,000 samples from the MS MARCO passage
dataset and aim to evaluate its QGen performance on a subset of
the BEIR benchmark.

3.2.2 Targeted Prompt Templates. Furthermore, we incorporate
targeted prompt templates inspired by Promptagator and enhance
them by providing K in-distribution examples, following the In-
Pars method. We also refer to this prompting strategy as I�P���+
prompts.

Due to time and budget constraints, we opt to not use the CoT
methodology outlined in §2.5 to build the prompts for generator
�ne-tuning. However, any observed bene�ts of the DSPy method
can potentially carry over well, as the two approaches carry theo-
retically multiplicative bene�ts.

3.2.3 �ery Evaluation. Preference optimization in general re-
quires a scoring mechanism that determines the weight of the
preferred or dispreferred option. In the context of information re-
trieval, we employ a scoring function combining Siamese networks

2https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
3https://huggingface.co/neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-
dynamic

4

https://huggingface.co/inpars
https://huggingface.co/models?search=zeta-alpha-ai+monot5
https://github.com/zetaalphavector/InPars?tab=readme-ov-file#Resources
https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
https://huggingface.co/neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic
https://huggingface.co/neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supercharging Synthetic Data Generation for Information Retrieval Systems Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

CORPUS (38 ,@8)

Teacher Model

Student Model

Score
Function

38

38

@̂C8

@̂B8

(38 ,@A8)

BA8

BC8

BB8

prefer
@A8

reject
@̂B8

_

_

Figure 2: Data generation for CPO-based �ne-tuning. A single pair of relevant document and query is sampled from the dataset.
The teacher and student model each generate a relevant query/response to the document. Afterwards, the three queries (@A8 , @̂

C
8 ,

and @̂B8) are scored for similarity with the target document. The query with highest and the query with the lowest score become
the preferred and the rejected query, respectively. This process can be repeated for all relevant query-document pairs in the
corpus.

for retrieval with normalized BM25 scores. The latter serves to alle-
viate some of the issues of using bi-encoders for similarity scoring.
The text encoder score B4=2 2 [0, 1] is de�ned as

B4=2 (doc, query) = 1 +
⌘doc · ⌘query

2| |⌘doc | | · | |⌘query | |
where B4=2 is the re-scaled cosine similarity between the em-

bedding vectors produced by the Siamese networks for query and
document. In our experiments, we employ Sentence Transformer
[Reimers and Gurevych 2019] encoder where the output of the last
Transformer layer is aggregated with a mean pooling layer. Doc-
ument embeddings are precomputed and stored in an embedding
table to accelerate retrieval.

In a similar fashion, we precompute the IDF index for BM25, and
compute BM25 scores across the batch of queries on-the-�y. Because
BM-25 scores are inherently not normalized, we take the softmax
across the entire corpus and only get the score corresponding to
the target query-document pair. The �nal score B is calculated as:

B (doc, query) = 0.5 · B4=2 (doc, query) + 0.5 · BBM25 (doc, query)

3.2.4 Pipeline Enhancements. In addition, we implement many
other enhancements to better utilize the available resources on the
system running InPars.

• Higher CPU utilization during prompt generation using
the Prompt builder class. On systems with high number of
logical processing cores, this substantially reduces the time
required for generating prompts.

• Additional caching and intermediate result backup, allow-
ing easy recovery from program crashes.

• Enhanced inference using vLLM [Kwon et al. 2023], en-
abling signi�cant speed-ups and better memory utilization
for multi-billion parameter models. In particular, this also
allows scaling up the number of synthetic queries within
a similar budget which can in turn yield improvements in
downstream retrieval performance.

3.2.5 DSPy for Enhanced Prompt Generation. To further improve
the quality of generated queries, we also study incorporating the

(a) MS MARCO

(b) SCIFACT

Figure 3: Comparison of similarity score distribution with
query evaluation applied on two sample datasets using Llama
3.1 70B as the teacher model and Llama 3.1 8B as the student
model. In a very noisy dataset such as MS MARCO, both
teacher and student are able to generate higher- or similar-
quality queries compared to the reference. Post-CPO, the
student is able to generate queries with a higher mode.

DSPy framework [Khattab et al. 2024]. Traditional synthetic data
generation approaches, such as InPars, rely on static, handcrafted
prompt templates that do not scale well to unseen datasets. To
address this issue, we leverage the LLM’s own capabilities to de-
termine what constitutes a relevant query. We utilize Chain of
Thought (CoT) reasoning to guide the LLM in breaking down the
document’s content into a series of logical steps before formulating

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Matey Krastev, Miklos Hamar, Danilo Toapanta, and Jesse Brouwers

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the �nal query. Prior work has shown that CoT reasoning can en-
hance performance by encouraging more structured, contextually
appropriate outputs [Wei, X. Wang, et al. 2022].

Following this approach, we treat the LLM as an agent by pro-
viding it a set of instructions to aid its adaptive query generation,
ensuring the model reasons about what is relevant to the dataset.

Figure 4: Module de�nition for AgentQueryGenerator, a
DSPy signature that prompts a meta-llama/Llama-3.1-8B
model to behave as a skilled research assistant.

Figure 4 illustrates the signature that con�gures the LLM as
an agent. Rather than relying on a �xed prompt template, DSPy
uses this signature to dynamically create a prompt, embedding the
agent’s instructions directly into the model’s reasoning steps.

While CoT allows the model to analyze the document systemati-
cally before generating queries, this came at the cost of additional
computations.

Furthermore, the model demonstrated a tendency to deviate
from its primary task – instead producing outputs which resemble
a continuation or extrapolation of the document and prompt. To al-
leviate this, we introduce stopping words which ensures adherence
to the task while preserving the integrity of the CoT approach.

3.2.6 Impact of Filtering. Finally, we hypothesize that an improved
query generation process should enable reduced �ltering, leading
to greater computational e�ciency. Thus, we analyze the e�ect of
�ltering using Zero-Shot and CoT strategies by conducting a full
end-to-end experiment, reducing the number of generated queries
from 100k to 10k, 25k, and 50k, thereby simulating scenarios where
signi�cantly fewer or no generations are removed by �ltering.

4 Results
In the following sections, we describe the reproduction of the origi-
nal InPars results and discuss the e�ects of our extensions.

4.1 Reproduction Experiments
The results of the reproductions are listed in Table 1. We observe
slight delta between our reproduction from scratch (experiment 1)
and results reported by the authors, where our results are consis-
tently lower for the target dataset.

With the synthetic query dataset provided by the authors (ex-
periment 2), our results are approaching the reported ones, which
might indicate some inconsistencies stemming from the dataset
generation procedure. This assumption is validated when we also
utilize their �ne-tuned reranker (experiment 3), where both results
match the reported results for the InPars-V2 pipeline.

Furthermore, using a bigger and more selectively trained model
[Gratta�ori et al. 2024], yields some marginal gains in downstream

performance, as seen in the columns listing the downstream results
of using synthetic queries generated by GPT-J and LLaMA.

In summary, our results largely match the original authors’,
despite some minor inconsistencies. This validates the identi�ed
claims that the pipeline is end-to-end reproducible and does in-
corporate plug-and-play functionality for di�erent generator and
reranker models with minimal modi�cations.

Table 1: Results of the reproduction experiments for the
SciFact dataset. The † symbol indicates experiments using
Promptagator templates. The number (1) in the second and
third columns indicate we have conducted experiment 1: full
pipeline.

InPars GPT-J (1) LLaMA (1) Exp.(2) Exp.(3)

BM25 0.678 0.679 0.679 0.679 0.679

InPars-V1 0.774 0.758 0.759 0.770 –
InPars-V2 0.774 0.752 0.759 0.770 0.770
InPars-V1† 0.790 0.766 0.778 – –
InPars-V2† 0.790 0.769 0.786 – 0.782

Average 0.782 0.761 0.771 0.770 0.776

4.2 Extensions and Ablations
4.2.1 Impact of Filtering. To evaluate the e�ectiveness of DSPy
prompts and the impact of �ltering, we propose an experiment
simulating low-resource settings. All �ne-tuned reranker models in
our experiments were trained on a subset of 10,000 synthetic queries.
In the original experiment proposed by the authors of InPars, 100k
query generations were �ltered to produce a smaller subset of
10k queries. To investigate the e�ects of �ltering and assess the
potential e�ciency gains of using DSPy for prompt construction,
we propose reducing the initial pool of 100k generations to smaller
random samples of 10k (no �ltering), 25k, and 50k queries, thereby
adjusting the �lter ratio from 90% to 0%, 60%, and 80%, respectively.

In this experiment, (Fig. 5), we adopt the InPars-V2 strategy,
where the top 10k queries are selected based on scores generated by
a MonoT5-3B reranker model. We experiment with the Trec-Covid
dataset.

We �nd that �ltering from larger subsets generally enhances
the quality of the trained reranker. This improvement likely stems
from the larger pool of instances, o�ering more opportunities to
select high-quality queries. Notably, the same results indicate that
CoT-produced prompts lead to degraded performance. Furthermore,
we observe an unexplained bump in performance when �ltering
from the 50k subset, which persists across di�erent seeds. Overall,
the results demonstrate that our proposed CoT prompting strategy,
combined with the 8B model, achieves performance comparable
to the original InPars-V2 results while using only a quarter of the
queries. These results suggest that CoT can enhance e�ciency and,
under equivalent resource conditions, even improve downstream
performance.

It is important to note that comparing experiments conducted
with Llama to those using GPT-J is not a direct one-to-one compar-
ison and may in�uence the results.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Supercharging Synthetic Data Generation for Information Retrieval Systems Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Main experimental results. We generate 10,000 synthetic queries using the model indicated in the �rst column and
InPars-V2 �ltering (SC) described in Sec. 2.2. We �ne-tune a monoT5 reranker for 1 epoch. Following that, for each query in the
test set, we sample the top 1000 documents using BM25, and then rerank using the �ne-tuned monoT5. For (1), no reranking is
done. In (5), the �rst row corresponds to our �ne-tuned LLama3.1 8B model using CPO over the MSMARCO dataset with the
original InPars prompting strategy. In the second row, we use InPars+ prompts (see Sec 3.2.2) and in the �nal row we again use
CoT prompting.

Method Filter C�� NFC A�� S������ A��

(1) BM25 N/A 0.595 0.322 0.397 0.679 0.498

(2) GPT-J 6B SC 0.824 0.373 0.105 0.770 0.518

(3.1) Llama 3.1 8B SC 0.845 0.380 0.126 0.759 0.531
(3.2) Llama 3.1 70B SC 0.708 0.378 0.113 0.754 0.488

(4) Llama 3.1 8B + CoT SC 0.856 0.390 0.368 0.786 0.600

(5) CPO @ MSMARCO SC 0.778 0.372 0.253 0.746 0.490
w/ IP+ prompts SC 0.769 0.368 0.609 0.749 0.622
w/ DSPy CoT SC 0.867 0.371 0.417 0.761 0.604

Figure 5: Impact of�ltering for zero-shot generation and CoT-
derived generation using monoT5 as reranker (K=1000). The
dotted line represents the baseline performance using the
top 10,000 queries from GPT-J, while the bars depict results
for queries generated by Llama 3.1 8B across various subsets.

4.2.2 Results in CPO. We observe that a trained student was able to
learn to generate generally higher scoring queries (Fig. 3), pushing
the score distribution upwards. However, as we observe in our
experimental results, bigger models do not necessarily produce
better outputs and this is also re�ected on the CPO learner.

The model trained on the MS MARCO subset seems to perform
reasonably well as a generalist generator. Furthermore, we observe
that �ltering for these models resulted in generally worse perfor-
mance for the reranker. As above, we hypothesize that we are
likely removing useful training signal. This seems particularly pro-
nounced for datasets such as Arguana, as there is only a limited set
of training data available.

4.2.3 DSPy results. Similarly, the use of dynamic prompt optimiza-
tion combined with Chain-of-Thought (CoT) consistently improves
performance across datasets. When compared to the baseline, it
is clear that the base Llama model, when used with DSPy and
InPars-V2 score-based �ltering, achieves the highest average score.
Notably, for the Arguana dataset, although BM25 still outperforms

the other baselines, the CoT approach signi�cantly enhances per-
formance, raising the nDCG score from 0.126 to 0.368, which is an
improvement of 27 nDCG@10 points.

4.2.4 Impact of Reranker model. To further investigate the e�ec-
tiveness of our approaches, we target ranking fewer documents
(= 100) and using a much smaller reranker model, in our case
����LM4, which has been shown to work comparatively well for
how lightweight it is[Boytsov et al. 2023]. We observe a similar
trend (Fig. 3) as with reranking = 1000 documents and monoT5 –
�ltering can be bene�cial for some domains and harmful for others.
Furthermore, bigger and theoretically more capable models do not
necessarily result in improved downstream performance.

Table 3: nDCG@10 results for S������ and TREC�C���� us-
ing MiniLM and reranking the top-100 documents. NF stands
for no �lter, and SC stands for “scores” �ltering adapted from
InPars-V2 [Jeronymo et al. 2023]

Generator Filter S������ C����

Llama 3.1 8B NF 0.707 0.775
SC 0.719 0.733

Llama 3.1 70B NF 0.700 0.763
SC 0.745 0.728

5 Discussion
5.1 Query Evaluation
We provide a quantitative demonstration of the query evaluation
framework in Figure 3 and contextualized samples in Table 4. Al-
though the �ne-tuned model is able to learn to generate better qual-
ity queries, it can occasionally repeat the entire document, which
is not useful for training but results in a high query evaluation
score (See Sec 3.2.3). To mitigate this, we introduced a maximum
4https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Matey Krastev, Miklos Hamar, Danilo Toapanta, and Jesse Brouwers

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

threshold for the query evaluation score to avoid training on such
false-positives. For future work, we aim to explore more sophisti-
cated approaches for query evaluation.

5.2 Contrastive Preference Optimization
One key assumption we made throughout this paper was that us-
ing better generator models will translate into higher quality of
downstream performance for our reranker using synthetic data.
However, this does not hold true in general, as seen in rows (3.1)
and (3.2) in Table 2.

We determine that further research is essential to determine the
potential impact of optimizing synthetic data generator models for
information retrieval. In particular, we plan to investigate better
ways to generate training datasets to encourage more appropriate
query generation.

5.3 CoT Prompts
As shown in Table 2, incorporating a guided process improves query
quality; however, this comes with trade-o�s and requires careful
consideration of certain aspects.

While we anticipated that applying CoT would improve query
quality and reduce the number of instances required for training,
this was not consistently observed, particularly for the TREC-Covid
dataset in �gure 5. This could be due to several factors:

• The TREC-Covid dataset represents a corpus of 171k doc-
uments. Training on a subset of the highest scoring docu-
ments seems to decrease the performance of the reranker.
Training on higher number of samples, instead of �ltering,
seems to provide better training signal translated into better
downstream performance.

• Although CoT reasoning introduces guided steps for query
generation, this can sometimes result in diminished per-
formance. CoT prompts may lead the model to generalize
in a way that detracts from the relevance of the generated
queries. For instance, in some cases, the reasoning steps
cause the model to focus on peripheral concepts rather than
extracting keywords or core topics directly relevant to the
document.

These results, however, relate to the speci�c the datasets we
test on. Further investigation across a larger pool of corpora is still
needed. To answer then the question whether a �ltering strategy is
needed, the answer seems not evident as of now. Nonetheless, we
note that using dynamic prompts instead of a static hardcoded tem-
plate does improves the downstream performance of the reranker
model, as indicated in the top scores for the 4 datasets shown.

6 Conclusion
In this study, we reproduce and verify the main claims of InPars
Toolkit, con�rming its claims of providing an end-to-end repro-
ducible pipeline and a clear guide for reproducing InPars-V1, InPars-
V2, and partially Promptagator. We also validate the pipeline’s plug-
and-play capability by integrating LLaMA 3.1 8B as the generator
model. Our results closely match the ones reported by the original
authors, supporting the toolkit’s reliability.

Beyond reproduction, we extend the toolkit in twoways. First, we
apply Contrastive Preference Optimization (CPO) to �ne-tune the

Table 4: Sample document from Scifact with its reference
query (�nding) and queries from the generator models.

Text Score

Document Myelodysplastic syndromes (MDS) are age-
dependent stem cell malignancies that... 100

Reference
Finding

Toll-like receptor (TLR) signaling is involved
in the pathogenesis of human MDS. 36.1

Teacher
Finding

Myeloid-derived suppressor cells (MDSC)
are... hematopoiesis. MSDC expansion... 96.3

Student
Finding

Myeloid-derived suppressor cells (MDSC) are
... of ine�ective hematopoiesis. 94.2

CPO
Finding

Myelodysplastic syndromes (MDS) are age-
dependent stem cell malignancies that... 99.6

generator LLM to guide the model into generating generally better
queries. Second, we apply CoT for dynamic prompt optimization
in lieu of �xed templates. This generally improved query quality,
though some cases revealed complexities which deserve further
investigation.

Overall, our reproductions and extension experiments build upon
the versatility of the InPars Toolkit and highlight practical pathways
for future research.

References
Hugo Abonizio, Luiz Bonifacio, Vitor Jeronymo, Roberto Lotufo, Jakub Zavrel, and Ro-

drigo Nogueira. 2023. “Inpars toolkit: A uni�ed and reproducible synthetic data gen-
eration pipeline for neural information retrieval.” arXiv preprint arXiv:2307.04601.

Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin, and Michael Collins. 2019.
“Synthetic QA corpora generation with roundtrip consistency.” arXiv preprint
arXiv:1906.05416.

Payal Bajaj et al.. 2016. “Msmarco: A human generatedmachine reading comprehension
dataset.” arXiv preprint arXiv:1611.09268.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. 2022. “In-
pars: Unsupervised dataset generation for information retrieval.” In: Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2387–2392.

Leonid Boytsov, Preksha Patel, Vivek Sourabh, Riddhi Nisar, Sayani Kundu, Ramya
Ramanathan, and Eric Nyberg. 2023. “Inpars-light: Cost-e�ective unsupervised
training of e�cient rankers.” arXiv preprint arXiv:2301.02998.

Aditi Chaudhary, Karthik Raman, and Michael Bendersky. 2023. It’s All Relative! – A
Synthetic Query Generation Approach for Improving Zero-Shot Relevance Prediction.
(2023). https://arxiv.org/abs/2311.07930 arXiv: 2311.07930 [cs.CL].

Zhuyun Dai et al.. 2022. “Promptagator: Few-shot dense retrieval from 8 examples.”
arXiv preprint arXiv:2209.11755.

Aaron Gratta�ori et al.. 2024. The Llama 3 Herd of Models. (2024). https://arxiv.org/abs
/2407.21783 arXiv: 2407.21783 [cs.AI].

Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo, Jakub
Zavrel, and Rodrigo Nogueira. 2023. “Inpars-v2: Large language models as e�cient
dataset generators for information retrieval.” arXiv preprint arXiv:2301.01820.

Omar Khattab et al.. 2024. “DSPy: Compiling Declarative Language Model Calls into
Self-Improving Pipelines.” In.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao
Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. “E�cient Memory Man-
agement for Large Language Model Serving with PagedAttention.” In: Proceedings
of the ACM SIGOPS 29th Symposium on Operating Systems Principles.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Alek-
sandra Piktus, Pontus Stenetorp, and Sebastian Riedel. 2021. “PAQ: 65 million
probably-asked questions and what you can do with them.” Transactions of the
Association for Computational Linguistics, 9, 1098–1115.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020. “Document ranking with a
pretrained sequence-to-sequence model.” arXiv preprint arXiv:2003.06713.

R OpenAI. 2023. “Gpt-4 technical report. arxiv 2303.08774.” View in Article, 2, 5.
Adam Paszke et al.. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. (2019). https://arxiv.org/abs/1912.01703 arXiv: 1912.01703 [cs.LG].
Nils Reimers and Iryna Gurevych. Nov. 2019. “Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks.” In: Proceedings of the 2019 Conference on Empirical

8

https://arxiv.org/abs/2311.07930
https://arxiv.org/abs/2311.07930
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Supercharging Synthetic Data Generation for Information Retrieval Systems Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan. Association for Computational Linguistics, Hong
Kong, China, (Nov. 2019), 3982–3992. ���: 10.18653/v1/D19-1410.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman
Cohan, and Hannaneh Hajishirzi. Nov. 2020. “Fact or Fiction: Verifying Scienti�c
Claims.” In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Ed. by Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu. Association for Computational Linguistics, Online, (Nov. 2020), 7534–
7550. ���: 10.18653/v1/2020.emnlp-main.609.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 billion parameter autoregressive
language model. (2021).

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M Dai, and Quoc V Le. 2021. “Finetuned language models are
zero-shot learners.” arXiv preprint arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed H Chi, Quoc V Le, and Denny Zhou. 2022. “Chain of Thought Prompting Elicits
Reasoning in Large Language Models.” arXiv preprint arXiv:2201.11903.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van
Durme, Kenton Murray, and Young Jin Kim. 2024. “Contrastive preference optimiza-
tion: Pushing the boundaries of llm performance in machine translation.” arXiv
preprint arXiv:2401.08417.

9

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.emnlp-main.609

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 QGen Pipelines
	2.2 InPars
	2.3 Promptagator
	2.4 Contrastive Preference optimization
	2.5 DSPy
	2.6 Research Gap

	3 Methodology
	3.1 Reproducibility
	3.2 Extending InPars-toolkit

	4 Results
	4.1 Reproduction Experiments
	4.2 Extensions and Ablations

	5 Discussion
	5.1 Query Evaluation
	5.2 Contrastive Preference Optimization
	5.3 CoT Prompts

	6 Conclusion

